Number of the records: 1  

Using geostatistics and machine learning models to analyze the influence of soil nutrients and terrain attributes on lead prediction in forest soils

  1. TitleUsing geostatistics and machine learning models to analyze the influence of soil nutrients and terrain attributes on lead prediction in forest soils
    Author infoSamuel Kudjo Ahado ... [et al.]
    Author Ahado Samuel Kudjo 1984- (50%) UMBFP09 - Katedra biológie a environmentálnych štúdií
    Co-authors Agyeman Prince Chapman (15%)
    Borůvka Luboš (15%)
    Kanianska Radoslava 1967- (15%) UMBFP09 - Katedra biológie a environmentálnych štúdií
    Nwaogu Chukwudi (5%)
    Source document Modeling earth systems and environment. Vol. 10, no. 2 (2024), pp. 2099-2112. - Cham : Springer Nature Switzerland AG, 2024
    Keywords olovo - lead   lesné pôdy   pôdne živiny - soil nutrients   geoštatistika  
    Form. Descr.články - journal articles
    LanguageEnglish
    CountryGermany
    URLLink na plný text
    Public work category ADM
    No. of Archival Copy54322
    Repercussion category KWAYISI, Daniel - KAZAPOE, Raymond Webrah - ALIDU, Seidu - SAGOE, Samuel Dzidefo - UMARU, Aliyu Ohiani - AMUAH, Ebenezer Ebo Yahans - KPIEBAYA, Prosper. Exploring soil pollution patterns in Ghana's 's northeastern mining zone using machine learning models. In Journal of hazardous materials advances. ISSN 2772-4166, 2024, vol. 16, art. no. 100480, pp. 1-13. DOI: https://doi.org/10.1016/j.hazadv.2024.100480
    Catal.org.BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici
    Databasexpca - PUBLIKAČNÁ ČINNOSŤ
    ReferencesPERIODIKÁ-Súborný záznam periodika
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.