Počet záznamov: 1  

Dual digraphs of finite semidistributive lattices

  1. NázovDual digraphs of finite semidistributive lattices
    Aut.údajeAndrew Craig ... [et al.]
    Autor Craig Andrew (34%)
    Spoluautori Haviar Miroslav 1965- (33%) UMBFP10 - Katedra matematiky
    São João José (33%)
    Zdroj.dok. Cubo : a mathematical journal. Vol. 24, no. 3 (2022), pp. 369-392. - Temuco : Department of mathematics and statistics of the Universidad de La Frontera, 2021
    Kľúč.slová grafové algoritmy   algebraické štruktúry - algebraic structures   matematika - mathematics  
    Form.deskr.články - journal articles
    Jazyk dok.angličtina
    KrajinaChile
    AnotáciaDual digraphs of finite join-semidistributive lattices, meet-semidistributive lattices and semidistributive lattices are characterised. The vertices of the dual digraphs are maximal disjoint filter-ideal pairs of the lattice. The approach used here combines representations of arbitrary lattices due to Urquhart (1978) and Ploščcica (1995). The duals of finite lattices are mainly viewed as TiRS digraphs as they were presented and studied in Craig–Gouveia–Haviar (2015 and 2022). When appropriate, Urquhart’s two quasi-orders on the vertices of the dual digraph are also employed. Transitive vertices are introduced and their role in the domination theory of the digraphs is studied. In particular, finite lattices with the property that in their dual TiRS digraphs the transitive vertices form a dominating set (respectively, an in-dominating set) are characterised. A characterisation of both finite meet- and join-semidistributive lattices is provided via minimal closure systems on the set of vertices of their dual digraphs.
    URLLink na plný text
    Kategória publikačnej činnosti ADM
    Číslo archívnej kópie52754
    Katal.org.BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici
    Báza dátxpca - PUBLIKAČNÁ ČINNOSŤ
    OdkazyPERIODIKÁ-Súborný záznam periodika
    článok

    článok

Počet záznamov: 1  

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.