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Abstract: This article deals with new concepts in a product MV-algebra, namely, with the concepts
of Rényi entropy and Rényi divergence. We define the Rényi entropy of order q of a partition in a
product MV-algebra and its conditional version and we study their properties. It is shown that the
proposed concepts are consistent, in the case of the limit of q going to 1, with the Shannon entropy of
partitions in a product MV-algebra defined and studied by Petrovičová (Soft Comput. 2000, 4, 41–44).
Moreover, we introduce and study the notion of Rényi divergence in a product MV-algebra. It is
proven that the Kullback–Leibler divergence of states on a given product MV-algebra introduced
by Markechová and Riečan in (Entropy 2017, 19, 267) can be obtained as the limit of their Rényi
divergence. In addition, the relationship between the Rényi entropy and the Rényi divergence as
well as the relationship between the Rényi divergence and Kullback–Leibler divergence in a product
MV-algebra are examined.
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1. Introduction

The Shannon entropy [1] and Kullback–Leibler divergence [2] are the most significant and most
widely used quantities in information theory [3]. Due to their successful use, many attempts have been
done to generalize them. It is known that their important generalizations are the Rényi entropy and
Rényi divergence [4], respectively. These quantities have many significant applications; for example,
in statistics, in ecology, and also in quantum information.

Shannon’s entropy is defined in the context of a probabilistic model in the following way: if we
consider a probability space (Ω, S, P) and a measurable partition E = {E1, E2, . . . , En} of (Ω, S, P),
then the Shannon entropy of E is defined as the number H(E)= −∑n

i=1 P(Ei)· log P(Ei) (with the usual
convention that P(Ei)· log P(Ei) = 0, for P(Ei) = 0). If E= {E1, E2, . . . , En} and F= {F1, F2, . . . , Fm}
are two measurable partitions of (Ω, S, P), then the conditional Shannon entropy of E assuming a

realization of F is defined as the number H(E/F ) = −∑n
i=1 ∑m

j=1 P(Ei ∩ Fj) · log
P(Ei∩Fj)

P(Fj)
(with the

usual convention that 0 · log 0
x = 0 if x ≥ 0). If E = {E1, E2, . . . , En} is a measurable partition of (Ω, S, P)

with probabilities pi = P(Ei), i = 1, 2, . . . , n, then its Rényi entropy of order q, where q ∈ (0, 1)∪ (1, ∞),
is defined as the number Hq(E) = 1

1−q log ∑n
i=1 pq

i . It can be shown that lim
q→1

Hq (E ) = ∑n
i=1 pi · log 1

pi
,

thus the Shannon entropy is a limiting case of the Rényi entropy for q→ 1 . It is known that there is no
universally accepted definition of conditional Rényi entropy. The paper [5] describes three definitions
of conditional Rényi entropy that can be found in the literature. In [6], it is also possible to find a brief
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overview of various approaches to defining the conditional Rényi entropy, and in addition, a new
definition of conditional Rényi entropy was proposed. In [7], the authors introduced a general type of
conditional Rényi entropy which contains some of previously defined conditional Rényi entropies as
special cases. The proposed concepts have successfully been used in information theory [8], time series
analysis [9], and cryptographic applications [10]. However, no one of the proposed generalizations
satisfies all basic properties of Shannon conditional entropy. The selection of the definition therefore
depends on the purpose of application.

The present article is devoted to the study of Rényi entropy and Rényi divergence in product
MV-algebras. An MV-algebra [11] is the most useful instrument for describing multivalued processes,
especially after its Mundici’s characterization as an interval in a lattice ordered group (cf. [12,13]).
At present, this algebraic structure is being studied by many researchers and it is natural that there
are results also regarding entropy in this structure; we refer, for instance, to [14,15]. Also, a measure
theory (cf. [16]) and a probability theory (cf. [17]) were studied on MV-algebras. Of course, in some
problems of probability it is necessary to introduce a product on an MV-algebra, an operation outside
the corresponding group addition. The operation of a product on an MV-algebra was suggested
independently in [18] from the viewpoint of mathematical logic and in [19] from the viewpoint of
probability. Also, the approach from the viewpoint of a general algebra suggested in [20] seems
interesting. We note that the notion of a product MV-algebra generalizes some classes of fuzzy sets;
a full tribe of fuzzy sets (see e.g., [21]) presents an example of a product MV-algebra.

A suitable entropy theory of Shannon and Kolmogorov-Sinai type for the case of a product
MV-algebra has been provided by Petrovičová in [22,23]. We remark that in our article [24], based
on the results of Petrovičová, we proposed the notions of Kullback–Leibler divergence and mutual
information of partitions in a product MV-algebra. In the present article, we continue studying
entropy and divergence in a product MV-algebra, by defining and studying the Rényi entropy and the
Rényi divergence.

The rest of the paper is structured as follows. In the following section, preliminaries and related
works are given. Our main results are discussed in Sections 3–5. In Section 3, we define the Rényi
entropy of a partition in a product MV-algebra and examine its properties. It is shown that for q→ 1
the Rényi entropy of order q converges to the Shannon entropy of a partition in a product MV-algebra
introduced in [22]. In Section 4, we introduce the concept of conditional Rényi entropy of partitions
in a product MV-algebra and study its properties. It is shown that the proposed definition of the
conditional Rényi entropy is consistent, in the case of the limit of q going to 1, with the conditional
Shannon entropy of partitions studied in [22], and that it satisfies the property of monotonicity and a
weak chain rule. In the final part of this section, we define the Rényi information about a partition X
in a partition Y as an example for the further usage of the proposed concept of the conditional Rényi
entropy. Section 5 is devoted to the study of Rényi divergence in a product MV-algebra. It is shown
that the Kullback–Leibler divergence in a product MV-algebra introduced by the authors in [24] can
be obtained as the limit of the Rényi divergence. We illustrate the results with numerical examples.
The last section contains a brief summary.

2. Preliminaries and Related Works

We start by reminding the definitions of basic terms and some of the known results that will be
used in the article. We mention some works related to the subject of this article, of course, without
claiming completeness.

Several different (but equivalent) axiom systems have been used to define the term of MV-algebra
(cf., e.g., [19,25,26]). In this paper, we use the definition of MV-algebra given by Riečan in [27], which
is based on the Mundici representation theorem. Based on Mundici’s theorem [12] (see also [13]),
MV-algebras can be considered as intervals of an abelian lattice-ordered group (shortly l-group).
We remind that by an l-group (cf. [28]) we understand a triplet (G,+,≤), where (G,+) is an abelian
group, (G,≤) is a partially ordered set being a lattice and x ≤ y⇒ x + z ≤ y + z.
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Definition 1 ([27]). An MV-algebra is an algebraic structure A = (A,⊕, ∗, 0, u) satisfying the
following conditions:

(i) there exists an l-group (G,+,≤) such that A = [0, u] = {x ∈ G; 0 ≤ x ≤ u}, where 0 is the neutral
element of (G,+) and u is a strong unit of G (i.e., u ∈ G such that u > 0 and to every x ∈ G there exists
a positive integer n with the property x ≤ nu;

(ii) ⊕ and ∗ are binary operations on A satisfying the following identities: x ⊕ y = (x + y) ∧ u,
x ∗ y = (x + y− u) ∨ 0.

We note that MV-algebras provide a generalization of Boolean algebras in the sense that every
Boolean algebra is an MV-algebra satisfying the condition x ⊕ x = x. For this reason, in order to
generalize the concept of probability on Boolean algebras, Mundici introduced in [29] the notion
of a state on an MV-algebra in the following way. Let A = (A,⊕, ∗, 0, u) be an MV-algebra.
A mapping s : A→ [0, 1] is a state on A whenever s(0) = 0 and, for every x, y ∈ A, the following
condition is satisfied: if x ∗ y = 0, then s(x ⊕ y) = s(x) + s(y). Since the definitions of product
MV-algebra and partition in a product MV-algebra are based on the Mundici representation theorem
(i.e., the MV-algebra operation ⊕ is substituted by the group operation + in the abelian l-group
corresponding to the considered MV-algebra), in this contribution, we shall use the following
(equivalent) definition of a state which is also based on the Mundici representation theorem. This
means that the sum in the following definition of a state, and subsequently in what follows, denotes
the sum in the abelian l-group that corresponds to the given MV-algebra.

Definition 2 ([27]). A state on an MV-algebra A= (A,⊕, ∗, 0, u) is a mapping s : A→ [0, 1] with the
following two properties:

(i) s(u) = 1;
(ii) if x, y ∈ A such that x + y ≤ u, then s(x + y) = s(x) + s(y).

Definition 3 ([19]). A product MV-algebra is an algebraic structure (A,⊕, ∗, ·, 0, u), where (A,⊕, ∗, 0, u) is
an MV-algebra and · is an associative and abelian binary operation on A with the following properties:

(i) for every x ∈ A, u · x = x;
(ii) if x, y, z ∈ A such that x + y ≤ u, then z · x + z · y ≤ u, and z · (x + y) = z · x + z · y.

For brevity, we will write (A, ·) instead of (A,⊕, ∗, ·, 0, u). A relevant probability theory for the
product MV-algebras was developed by Riečan in [30], see also [31,32]; the entropy theory of Shannon
and Kolmogorov-Sinai type for the product MV-algebras was proposed in [22,23]. We present the main
idea and some results of these theories that will be used in the following text.

As in [22], by a partition in a product MV-algebra (A, ·), we understand any n-tuple
X = (x1, x2, . . . , xn) of elements of A with the property x1 + x2 + . . . + xn = u. In the system of all
partitions in a given product MV-algebra (A, ·), we define the refinement partial order � in a standard
way (cf. [33]). If X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) are two partitions in (A, ·), then we
write Y � X (and we say that Y is a refinement of X), if there exists a partition {J(1), J(2), . . . , J(n)}
of the set {1, 2, . . . , m} such that xi = ∑j∈J(i) yj, for i = 1, 2, . . . , n. Further, for two finite sequences
X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) of elements of A, we put X ∨Y = (xi · yj; i = 1, 2, . . . , n,
j = 1, 2, . . . , m). If X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) are partitions in (A, ·), then the system
X ∨Y is a partition in (A, ·), since ∑n

i=1 ∑m
j=1 xi · yj= (∑n

i=1 xi) ·
(

∑m
j=1 yj

)
= u · u = u. Later we shall

need the following assertion:

Proposition 1. If X, Y, Z are partitions in a product MV-algebra (A, ·), then it holds X ∨Y � X, and Y � X
implies Y ∨ Z � X ∨ Z.
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Proof. The proof can be found in [33]. �

The following example shows that the model studied in this article generalizes the classical case.

Example 1. Let us consider a probability space (Ω, S, P) and put A = {IE; E ∈ S}, where IE : Ω→ {0, 1}
is the indicator function of the set E ∈ S. The class A is closed with respect to the product of indicator
functions and it represents a special case of product MV-algebras. The mapping s : A→ [0, 1] defined, for every
IE ∈ A, by s(IE) = P(E), is a state on the considered product MV-algebra (A, ·). A measurable partition
{E1, E2, . . . , En} of (Ω, S, P) can be viewed as a partition in the product MV-algebra (A, ·), if we consider the
n-tuple

(
IE1 , IE2 , . . . , IEn

)
instead of {E1, E2, . . . , En}.

Example 2. Let (Ω, S, P) be a probability space, and A be the class of all S−measurable functions
f : Ω→ [0, 1], so called full tribe of fuzzy sets (cf., e.g., [21,34]). The class A is closed with respect to the

natural product of fuzzy sets and it represents a significant case of product MV-algebras. The map s : A→ [0, 1]
defined, for every f ∈ A, by s( f ) =

∫
Ω f dP, is a state on the product MV-algebra (A, ·). The notion of a

partition in the product MV-algebra (A, ·) coincides with the notion of a fuzzy partition (cf. [34]).

Definition 4. Let s be a state on a product MV-algebra (A, ·). We say that partitions X, Y in (A, ·) are
statistically independent with respect to s, if s(x · y) = s(x) · s(y), for every x ∈ X, and y ∈ Y.

The following definition of entropy of Shannon type was introduced in [22].

Definition 5. Let X = (x1, x2, . . . , xn) be a partition in a product MV-algebra (A, ·) and let s : A→ [0, 1] be
a state. Then the entropy of X with respect to s is defined by Shannon’s formula

Hs(X) = −∑n
i=1 s(xi) · log s(xi). (1)

If X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) are two partitions in (A, ·), then the conditional
entropy of X given yj ∈ Y is defined by

Hs(X/yj) = −
n

∑
i=1

s(xi/yj) · log s(xi/yj),

where

s(xi/yj) =

{ s(xi ·yj)

s(yj)
, if s(yj) > 0;

0, if s(yj) = 0.
(2)

The conditional entropy of X given Y is defined by

Hs(X/Y) =
m

∑
j=1

s(yj) · Hs(X/yj) = −
n

∑
i=1

m

∑
j=1

s(xi · yj) · log
s(xi · yj)

s(yj)
. (3)

Here, the usual convention that 0 log 0
x = 0 if x ≥ 0 is used. The base of the logarithm can be any

positive real number, but as a rule one takes logarithms to the base 2. The entropy is then expressed
in bits. The entropy and the conditional entropy of partitions in a product MV-algebra satisfy all
properties that correspond to properties of Shannon’s entropy of measurable partitions in the classical
case; for more details, see [22].

In [24], the concepts of mutual information and Kullback–Leibler divergence in a product
MV-algebra were introduced in the following way.
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Definition 6. Let X, Y be partitions in a product MV-algebra (A, ·), and let s : A→ [0, 1] be a state. We define
the mutual information between X and Y by the formula

Is(X, Y) = Hs(X)− Hs(X/Y). (4)

Definition 7. Let s, t be states defined on a given product MV-algebra (A, ·), and X = (x1, x2, . . . , xn) be a
partition in (A, ·). Then we define the Kullback–Leibler divergence DX(s ‖ t) by the formula

DX(s ‖ t) = ∑n
i=1 s(xi) · log

s(xi)

t(xi)
. (5)

The logarithm in this formula is taken to the base 2 and information is measured in units of bits.
We use the convention that x log x

0 = ∞ if x > 0, and 0 log 0
x = 0 if x ≥ 0.

In the proofs, we shall use the Jensen inequality which states that for a real concave function
ϕ, real numbers a1, a2, . . . , an in its domain and nonnegative real numbers c1, c2, . . . , cn such that
∑n

i=1 ci = 1, it holds

ϕ
(
∑n

i=1 ciai

)
≥∑n

i=1 ci ϕ(ai), (6)

and the inequality is reversed if ϕ is a real convex function. The equality holds if and only if
a1 = a2 = . . . = an or ϕ is linear.

Further, we recall the following notions.

Definition 8. Let D be a non-empty set and f : D → < be a real function defined on it. Then the support of f
is defined by supp ( f ) = {x ∈ D; f (x) 6= 0}.

Definition 9. Let f : D → < be a real function defined on a non-empty set D. Define the q-norm, for
1 ≤ q < ∞, or q-quasinorm, for 0 < q < 1, of f as

‖ f ‖q=
(
∑x∈D| f (x)|q

) 1
q .

3. The Rényi Entropy of a Partition in a Product MV-Algebra

In this section, we define the Rényi entropy of a partition in a product MV-algebra (A, ·),
and examine its properties. In the following, we assume that s : A→ [0, 1] is a state.

Definition 10. Let X = (x1, x2, . . . , xn) be a partition in a product MV-algebra (A, ·). Then we define the
Rényi entropy of order q, where q ∈ (0, 1) ∪ (1, ∞), of the partition X with respect to s as the number:

Hs
q(X) =

1
1− q

log
n

∑
i=1

s(xi)
q. (7)

Remark 1. In accordance with the classical theory, the log is to the base 2 and the Rényi entropy is expressed in
bits. For simplicity, we write s(xi)

q instead of (s(xi))
q and log ∑n

i=1 s(xi)
q instead of log

(
∑n

i=1 s(xi)
q).

Let X = (x1, x2, . . . , xn) be a partition in (A, ·). If we consider the function sX : X → <, defined,
for every xi ∈ X, by sX(xi) = s(xi), then we have

‖ sX ‖q=
(
∑n

i=1 s(xi)
q
) 1

q ,



Entropy 2018, 20, 587 6 of 19

and the Formula (7) can be expressed in the following equivalent form:

Hs
q(X) =

q
1− q

log
(
‖ sX ‖q

)
. (8)

Example 3. Let X = (x1, x2, . . . , xn) be any partition in a product MV-algebra (A, ·). Let s : A→ [0, 1] be a
uniform state over X, i.e., s(xi) =

1
n , for i = 1, 2, . . . , n. Then

Hs
q(X) =

1
1− q

log
n

∑
i=1

(
1
n

)q
=

1
1− q

log n1−q = log n.

Example 4. Let us consider any product MV-algebra (A, ·), and the partition E = (u) in (A, ·) that represents
an experiment resulting in a certain event. It is easy to see that Hs

q(E) = 0.

Remark 2. It is possible to verify that the Rényi entropy Hs
q(X) is always nonnegative. Namely, for q ∈ (0, 1),

and i = 1, 2, . . . , n, we have s(xi)
q ≥ s(xi), hence ∑n

i=1 s(xi)
q ≥ ∑n

i=1 s(xi) = s(∑n
i=1 xi) = s(u) = 1.

It follows that Hs
q(X) = 1

1−q log
n
∑

i=1
s(xi)

q ≥ 0. On the other hand, for q ∈ (1, ∞), and i = 1, 2, . . . , n, it holds

s(xi)
q ≤ s(xi), hence

n
∑

i=1
s(xi)

q ≤
n
∑

i=1
s(xi) = 1. The assumption q ∈ (1, ∞) implies 1

1−q < 0, therefore,

we get Hs
q(X) = 1

1−q log
n
∑

i=1
s(xi)

q ≥ 0.

At q = 1 the value of the quantity Hs
q(X) is undefined since it generates the form 0

0 . In the
following theorem, it is shown that for q→ 1 the Rényi entropy Hs

q(X) converges to the Shannon
entropy of a partition X in (A, ·) defined by the formula (1).

Theorem 1. Let X = (x1, x2, . . . , xn) be any partition in a product MV-algebra (A, ·). Then

lim
q→1

Hs
q(X) = −∑n

i=1 s(xi) · log s(xi).

Proof. Put f (q) = log ∑n
i=1 s(xi)

q, and g(q) = 1 − q, for every q ∈ (0, ∞). The functions f , g are
differentiable and for every q ∈ (0, 1) ∪ (1, ∞), we have Hs

q(X) = f (q)
g(q) . Evidently, lim

q→1
g(q) = 0,

and lim
q→1

f (q) = lim
q→1

log ∑n
i=1 s(xi)

q = log ∑n
i=1 s(xi) = log 1 = 0. Using L’Hôpital’s rule, this yields that

lim
q→1

Hs
q(X) = lim

q→1

f ′(q)
g′(q) , under the assumption that the right hand side exists. It holds d

dq g(q) = −1, and

d
dq f (q) = 1

(ln 2)∑n
i=1 s(xi)

q

n
∑

i=1

d
dq s(xi)

q

= 1
(ln 2)∑n

i=1 s(xi)
q

n
∑

i=1
s(xi)

q lns(xi) =
1

∑n
i=1 s(xi)

q

n
∑

i=1
s(xi)

q logs(xi).

Note that the calculation of the derivative of function f is easily done by using the identity bα = eα ln b.
We get

lim
q→1

Hs
q(X) = lim

q→1

−1
∑n

i=1 s(xi)
q

n

∑
i=1

s(xi)
q logs(xi) = −

n

∑
i=1

s(xi) logs(xi),

which is the Shannon entropy of X defined by the Formula (1). �

In the following theorem it is proved that the function Hs
q(X) is monotonically decreasing in q.
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Theorem 2. Let X be any partition in a given product MV-algebra (A, ·), and q1, q2 ∈ (0, 1) ∪ (1, ∞). Then
q1 ≥ q2 implies Hs

q1
(X) ≤ Hs

q2
(X).

Proof. Suppose that X = x1, x2, . . . , xn and q1, q2 ∈ (1, ∞) such that q1 ≥ q2. Then the claim is
equivalent to the inequality

(
∑n

i=1 s(xi)
q1
) 1

q1−1 ≥
(
∑n

i=1 s(xi)
q2
) 1

q2−1 .

The above inequality follows by applying the Jensen inequality to the function ϕ, defined, for every

x ∈ [0, ∞), by ϕ(x) = x
q2−1
q1−1 . The assumption q1 ≥ q2 implies q2−1

q1−1 ≤ 1, hence the function ϕ is concave.

Putting ci = s(xi), and ai = s(xi)
q1−1, i = 1, 2, . . . , n, in the inequality (6), we get

(
∑n

i=1 s(xi)
q1
) 1

q1−1 =
(

∑n
i=1 s(xi)s(xi)

q1−1
) q2−1

(q1−1)(q2−1)

=

([
∑n

i=1 s(xi)s(xi)
q1−1

] q2−1
q1−1

) 1
q2−1

≥
(

∑n
i=1 s(xi)s(xi)

q2−1
) 1

q2−1
=
(
∑n

i=1 s(xi)
q2
) 1

q2−1 .

The case where q1, q2 ∈ (0, 1) is obtained in an analogous way. Finally, the case where q1 ∈ (1, ∞),
and q2 ∈ (0, 1) is obtained by transitivity. �

Example 5. Consider any product MV-algebra (A, ·), and a state s : A→ [0, 1]. Let x ∈ A with s(x) = p,
where p ∈ (0, 1). Then s(u − x) = 1− p, and the pair X = (x, u − x) is a partition in (A, ·). If we put
p = 1

2 , then we have Hs
q(X) = 1 bit, for every q ∈ (0, 1) ∪ (1, ∞). Put p = 1

3 . By simple calculations we get
Hs

1/2(X)
.
= 0.958 bit, Hs

2(X)
.
= 0.848 bit, Hs

1/3(X)
.
= 0.972 bit. So, it holds Hs

2(X) < Hs
1/2(X) < Hs

1/3(X),
which is consistent with the property proven in the previous theorem.

Theorem 3. Let X, Y be partitions in a product MV-algebra (A, ·) such that Y � X. Then Hs
q(X) ≤ Hs

q(Y).

Proof. Suppose that X = (x1, x2, . . . , xn),Y = (y1, y2, . . . , ym),Y � X. Then there exists a partition
{J(1), J(2), . . . , J(n)} of the set {1, 2, . . . , m} such that xi = ∑j∈J(i) yj, for i = 1, 2, . . . , n. Hence

s(xi) = s
(

∑j∈J(i) yj

)
= ∑j∈J(i) s(yj), for i = 1, 2, . . . , n.

(i) Consider the case when q ∈ (1, ∞). Then s(xi)
q =

(
∑j∈J(i) s(yj)

)q
≥ ∑j∈J(i) s(yj)

q,
for i = 1, 2, . . . , n, and consequently

n

∑
i=1

s(xi)
q ≥∑n

i=1 ∑j∈J(i) s(yj)
q =

m

∑
j=1

s(yj)
q.

Therefore, we get
log ∑n

i=1 s(xi)
q ≥ log ∑m

j=1 s(yj)
q.

In this case we have 1
1−q < 0, hence

Hs
q(X) =

1
1− q

log
n

∑
i=1

s(xi)
q ≤ 1

1− q
log

m

∑
j=1

s(yj)
q = Hs

q(Y).
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(ii) Consider the case when q ∈ (0, 1). Then s(xi)
q =

(
∑j∈J(i) s(yj)

)q
≤ ∑j∈J(i) s(yj)

q,
for i = 1, 2, . . . , n, and consequently

∑n
i=1 s(xi)

q ≤∑m
j=1 s(yj)

q.

Therefore, we get
log ∑n

i=1 s(xi)
q ≤ log ∑m

j=1 s(yj)
q.

In this case we have 1
1−q > 0, hence

Hs
q(X) =

1
1− q

log
n

∑
i=1

s(xi)
q ≤ 1

1− q
log

m

∑
j=1

s(yj)
q = Hs

q(Y).

�

As an immediate consequence of the previous theorem and Proposition 1, we obtain the
following result.

Corollary 1. For every partition X, Y in a product MV-algebra (A, ·), it holds

Hs
q(X ∨Y) ≥ max

[
Hs

q(X), Hs
q(Y)

]
. (9)

Example 6. Consider the measurable space ([0, 1],B), where B is the σ−algebra of all Borel subsets of the
unit interval [0, 1]. Let A be the family of all Borel measurable functions f : [0, 1]→ [0, 1]. If we define in the
family A the operation · as the natural product of fuzzy sets, then the system (A, ·) is a product MV-algebra.
We define a state s : A→ [0, 1] by the equality s( f ) =

∫ 1
0 f (x)dx, for any element f of A. It is easy to see

that the pairs X = ( f1, f2), Y = (g1, g2), where f1(x) = x, f2(x) = 1− x, g1(x) = x2, g2(x) = 1− x2,
x ∈ [0, 1], are partitions in (A, ·) with the state values 1

2 , 1
2 and 1

3 , 2
3 of the corresponding elements, respectively.

The join of partitions X and Y is the system X ∨ Y = ( f1 · g1, f1 · g2, f2 · g1, f2 · g2) with the state values
1
4 , 1

4 , 1
12 , 5

12 of the corresponding elements. Using Formula (7), it can be computed that Hs
1/2(X∨Y) .

= 1.903 bit,
Hs

2(X ∨Y) .
= 1.710 bit. We have Hs

1/2(X) = Hs
2(X) = 1 bit, Hs

1/2(Y)
.
= 0.958 bit, and Hs

2(Y)
.
= 0.848 bit.

It can be seen that the inequality (9) applies.

Theorem 4. If partitions X, Y in a product MV-algebra (A, ·) are statistically independent with respect to s,
then Hs

q(X ∨Y) = Hs
q(X) + Hs

q(Y).

Proof. Suppose that X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , ym). Let us calculate:

Hs
q(X ∨Y) = 1

1−q log
n
∑

i=1

m
∑

j=1
s(xi · yj)

q = 1
1−q log

(
n
∑

i=1
s(xi)

q·
m
∑

j=1
s(yj)

q

)
= 1

1−q log
n
∑

i=1
s(xi)

q+ 1
1−q log

m
∑

j=1
s(yj)

q = Hs
q(X) + Hs

q(Y).

�

4. The Conditional Rényi Entropy in a Product MV-Algebra

In this section, we introduce the concept of conditional Rényi entropy Hs
q(X/Y) of partitions

in a product MV-algebra (A, ·), analogously to [6]. It is shown that the proposed definition is
consistent, in the case of the limit of q going to 1, with the conditional Shannon entropy defined
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by Equation (3). Subsequently, by using the proposed notion of conditional Rényi entropy, we define
the Rényi information about a partition X in a partition Y.

Let X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) be two partitions in a product MV-algebra
(A, ·), and yj ∈ Y be fixed. If we consider the function sX/yj

: X → <, defined, for every xi ∈ X,
by sX/yj

(xi) = s(xi/yj), then we have

‖ sX/yj
‖q=

(
n

∑
i=1

s(xi/yj)
q

) 1
q

.

Definition 11. Let X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) be partitions in (A, ·). We define the
conditional Rényi entropy of order q, where q ∈ (0, 1) ∪ (1, ∞), of X given Y by the formula

Hs
q(X/Y) =

q
1− q

log

(
m

∑
j=1

s(yj) ‖ sX/yj
‖q

)
. (10)

Remark 3. In the same way as in the unconditional case, it can be verified that the conditional Rényi entropy
Hs

q(X/Y) is always nonnegative. Let X = (x1, x2, . . . , xn) be any partition in (A, ·), and E = (u).
Since sX/u(xi) = s(xi/u) = s(xi) = sX(xi), for i = 1, 2, . . . , n, it holds ‖ sX/u ‖q=‖ sX ‖q,
and consequently

Hs
q(X/E) =

q
1− q

log
(
s(u) ‖ sX/u ‖q

)
=

q
1− q

log
(
‖ sX ‖q

)
= Hs

q(X).

Proposition 2. Let X = (x1, x2, . . . , xn) be a partition in a product MV-algebra (A, ·) and let s : A→ [0, 1]
be a state. Then:

(i) ∑n
i=1 s(xi · y) = s(y), for any element y ∈ A;

(ii) ∑n
i=1 s(xi/y) = 1, for any element y ∈ A such that s(y) > 0.

Proof. The proof of the claim (i) can be found in [33]. If y ∈ A such that s(y) > 0, then using the
previous equality, we get

n

∑
i=1

s(xi/y) =
1

s(y)

n

∑
i=1

s(xi · y) =
s(y)
s(y)

= 1.

�

Theorem 5. Let X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) be partitions in (A, ·). Then

lim
q→1

Hs
q(X/Y) = −

n

∑
i=1

m

∑
j=1

s(xi · yj) · log
s(xi · yj)

s(yj)
.

Proof. For every q ∈ (0, 1) ∪ (1, ∞), we have

Hs
q(X/Y) =

q
1− q

log

(
m

∑
j=1

s(yj) ‖ sX/yj
‖q

)
= − 1

1− 1
q

log

(
m

∑
j=1

s(yj) ‖ sX/yj
‖q

)
= − f (q)

g(q)
,

where f and g are continuous functions defined, for every q ∈ (0, ∞), by the equalities

f (q) = log

(
m

∑
j=1

s(yj) ‖ sX/yj
‖q

)
, g(q) = 1− 1

q
.
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The functions f and g are differentiable and evidently, lim
q→1

g(q) = 0. Also, it can easily be verified that

lim
q→1

f (q) = 0. Indeed, if we put δ =
{

j; s(yj) > 0
}

, then using Proposition 2, we get

lim
q→1

f (q) = log

(
m
∑

j=1
s(yj)

n
∑

i=1
s(xi/yj)

)
= log

(
∑
j∈δ

s(yj)
n
∑

i=1
s(xi/yj)

)

= log

(
∑
j∈δ

s(yj)
n
∑

i=1

s(xi ·yj)

s(yj)

)
= log

(
∑
j∈δ

n
∑

i=1
s(xi · yj)

)

= log

(
∑
j∈δ

s(yj)

)
= log

(
m
∑

j=1
s(yj)

)
= log 1 = 0.

Using L’Hôpital’s rule, it follows that lim
q→1

Hs
q(X/Y) = −lim

q→1

f ′(q)
g′(q) , under the assumption that the

right-hand side exists. Let us calculate the derivatives of the functions f and g. We have d
dq g(q) = 1

q2 ,

and d
dq f (q) = h′(q)

h(q) ln 2 , where h(q) is the continuous function defined, for every q ∈ (0, ∞), by the

formula h(q) =
m
∑

j=1
s(yj) ‖ sX/yj

‖q with the continuous derivative h′ for which it holds

h′(q) =
m

∑
j=1

s(yj) ‖ sX/yj
‖q ·

[
− 1

q2 ln
n

∑
i=1

s(xi/yj)
q +

1
q

1
∑n

i=1 s(xi/yj)
q

n

∑
i=1

s(xi/yj)
q ln s(xi/yj)

]
.

Analogously as in the proof of Theorem 1, we used the identity bα = eα ln b to calculate the
derivative of function h.

We get

lim
q→1

f ′(q) =
1

ln 2

m

∑
j=1

s(yj)
n

∑
i=1

s(xi/yj) ln s(xi/yj) =
m

∑
j=1

n

∑
i=1

s(xi · yj) log
s(xi · yj)

s(yj)
.

It follows

lim
q→1

Hs
q(X/Y) = −lim

q→1
f ′(q) = −

n

∑
i=1

m

∑
j=1

s(xi · yj) · log
s(xi · yj)

s(yj)
,

which is the conditional Shannon entropy of X given Y defined by Equation (3). �

Theorem 6 (monotonicity). Let X and Y be partitions in a product MV-algebra (A, ·). Then

Hs
q(X/Y) ≤ Hs

q(X).

Proof. Let X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , ym). Then by Proposition 2, it holds s(xi) = ∑m
j=1s(xi · yj),

for i = 1, 2, . . . , n. Suppose that q ∈ (1, ∞). Then, using the triangle inequality of the q-norm, we get

∑n
i=1 s(xi)

q = ∑n
i=1

(
∑m

j=1 s(xi · yj)
)q

=

((
∑n

i=1

(
∑m

j=1 s(xi · yj)
)q) 1

q

)q

=
(
‖ ∑m

j=1 sX∨(yj)
‖q

)q
≤
(

∑m
j=1 ‖ sX∨(yj)

‖q

)q
=
(

∑m
j=1 s(yj) ‖ sX/yj

‖q

)q
.

It follows that
log ∑n

i=1 s(xi)
q ≤ log

(
∑m

j=1 s(yj) ‖ sX/yj
‖q

)q
,
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and consequently

Hs
q(X) = 1

1−q log ∑n
i=1 s(xi)

q ≥ 1
1−q log

(
∑m

j=1 s(yj) ‖ sX/yj
‖q

)q

= q
1−q log

(
∑m

j=1 s(yj) ‖ sX/yj
‖q

)
= Hs

q(X/Y).

For the case where q ∈ (0, 1), we put r = 1
q . By writing the Rényi entropy in terms of the 1

q -norm

and using the triangle inequality for the 1
q -norm, we get

Hs
q(X) = 1

1−q log ∑n
i=1 s(xi)

q = r
r−1 log ∑n

i=1 s(xi)
1
r = r

r−1 log ∑n
i=1

(
∑m

j=1 s(xi · yj)
) 1

r

= r
r−1 log ∑n

i=1 ‖ s
1
r
(xi)∨Y ‖r ≥ r

r−1 log ‖ ∑n
i=1 s

1
r
(xi)∨Y ‖r

= r
r−1 log

(
∑m

j=1

(
∑n

i=1 s(xi · yj)
1
r

)r) 1
r
= r

r−1 log
(

∑m
j=1 s(yj)

(
∑n

i=1 s(xi/yj)
1
r

)r) 1
r

= 1
r−1 log

(
∑m

j=1 s(yj)
(

∑n
i=1 s(xi/yj)

1
r

)r)
= q

1−q log

(
m
∑

j=1
s(yj) ‖ sX/yj

‖q

)
= Hs

q(X/Y).

�

Theorem 7. If partitions X, Y in a product MV-algebra (A, ·) are statistically independent with respect to s,
then Hs

q(X/Y) = Hs
q(X).

Proof. Suppose that X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , ym), and put δ =
{

j; s(yj) > 0
}

. Since it
holds ∑j∈δ s(yj) =∑m

j=1 s(yj) = 1, we get

Hs
q(X/Y) = q

1−q log

(
m
∑

j=1
s(yj)

(
n
∑

i=1
s(xi/yj)

q
) 1

q
)

= q
1−q log

(
∑
j∈δ

s(yj)

(
n
∑

i=1

s(xi)
qs(yj)

q

s(yj)
q

) 1
q
)

= q
1−q log

(
∑
j∈δ

s(yj)

(
n
∑

i=1
s(xi)

q
) 1

q
)

= 1
1−q log

n
∑

i=1
s(xi)

q = Hs
q(X).

�

Theorem 8. Let X, Y be partitions in a product MV-algebra (A, ·), and q1, q2 ∈ (0, 1) ∪ (1, ∞). Then q1 ≥ q2

implies Hs
q1
(X/Y) ≤ Hs

q2
(X/Y).

Proof. Suppose that X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , ym), and q1, q2 ∈ (1, ∞). Then the claim is
equivalent to the inequality

(
m

∑
j=1

s(yj) ‖ sX/yj
‖q1

) q1
q1−1

≥
(

m

∑
j=1

s(yj) ‖ sX/yj
‖q2

) q2
q2−1

. (11)

We prove this inequality by applying twice the Jensen inequality. First, we apply the Jensen

inequality to the function ϕ1 defined, for every x ∈ [0, ∞), by ϕ1(x) = x
q1(q2−1)
q2(q1−1) . The assumption

q1 ≥ q2 implies that q1(q2−1)
q2(q1−1) ≤ 1, hence the function ϕ1 is concave. Therefore, if we put cj = s(yj),

and aj =‖ sX/yj
‖q1 , j = 1, 2, . . . , m, in the inequality (6), we obtain



Entropy 2018, 20, 587 12 of 19

(
∑m

j=1 s(yj) ‖ sX/yj
‖q1

) q1
q1−1

=

[(
∑m

j=1 s(yj) ‖ sX/yj
‖q1

) q1(q2−1)
q2(q1−1)

] q2
q2−1

≥
[

∑m
j=1 s(yj)

(
‖ sX/yj

‖q1

) q1(q2−1)
q2(q1−1)

] q2
q2−1

=

[
∑m

j=1 s(yj)
(

∑n
i=1 s(xi/yj)s(xi/yj)

q1−1
) q2−1

q2(q1−1)

] q2
q2−1

.

Next, we apply the Jensen inequality to the function ϕ2 defined, for every x ∈ [0, ∞),

by ϕ2(x) = x
q2−1
q1−1 . The assumption q1 ≥ q2 implies q2−1

q1−1 ≤ 1, hence the function ϕ2 is concave.

Put ci = s(xi/yj), and ai = s(xi/yj)
q1−1, i = 1, 2, . . . , n, in the inequality (6). Note that according to

Proposition 2, it holds ∑n
i=1 ci = 1. By the Jensen inequality we get

[
∑m

j=1 s(yj)
(

∑n
i=1 s(xi/yj)s(xi/yj)

q1−1
) q2−1

q2(q1−1)

] q2
q2−1

≥
[

∑m
j=1 s(yj)

(
∑n

i=1 s(xi/yj)
q2
) 1

q2

] q2
q2−1

=
(

∑m
j=1 s(yj) ‖ sX/yj

‖q2

) q2
q2−1 .

By combining the previous results, we obtain the inequality (11). Analogously, we can prove the
inequality for the case where q1, q2 ∈ (0, 1). Finally, the case where q1 ∈ (1, ∞) and q2 ∈ (0, 1) follows
by transitivity. �

In the following theorem, a weak chain rule for the Rényi entropy of partitions in a product
MV-algebra (A, ·) is given.

Theorem 9. Let X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) be partitions in a product MV-algebra
(A, ·). Then

Hs
q(X ∨Y) ≤ Hs

q(X/Y) + log β,

where β = max
{

1
s(yj)

; yj ∈ supp(s), j = 1, 2, . . . , m
}

.

Proof. Put δ =
{

j; s(yj) > 0
}

. The assertion follows by applying the Jensen inequality to the function
ϕ defined by ϕ(x) = xq, x ∈ [0, ∞), and putting cj = s(yj),aj =‖ sX/yj

‖q,j = 1, 2, . . . , m.
Let q ∈ (0, 1). Then the function ϕ is concave, and therefore we get(

∑m
j=1 s(yj) ‖ sX/yj

‖q

)q
≥ ∑m

j=1 s(yj)
(
‖ sX/yj

‖q

)q

= ∑
j∈δ

s(yj)
n
∑

i=1

s(xi ·yj)
q

s(yj)
q = ∑

j∈δ

(
1

s(yj)

)q−1 n
∑

i=1
s(xi · yj)

q ≥ ∑
j∈δ

βq−1
n
∑

i=1
s(xi · yj)

q.

It follows

Hs
q(X/Y) = q

1−q log

(
m
∑

j=1
s(yj) ‖ sX/yj

‖q

)
≥ 1

1−q log

(
βq−1 ∑

j∈δ

n
∑

i=1
s(xi · yj)

q

)
= − log β + 1

1−q log
m
∑

j=1

n
∑

i=1
s(xi · yj)

q = − log β + Hs
q(X ∨Y).

Consider now the case where q ∈ (1, ∞). Then the function ϕ is convex, and therefore we have(
∑m

j=1 s(yj) ‖ sX/yj
‖q

)q
≤ ∑m

j=1 s(yj)
(
‖ sX/yj

‖q

)q

= ∑
j∈δ

(
1

s(yj)

)q−1 n
∑

i=1
s(xi · yj)

q ≤ ∑
j∈δ

βq−1
n
∑

i=1
s(xi · yj)

q.
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Thus
q log

(
∑m

j=1 s(yj) ‖ sX/yj
‖q

)
≤ (q− 1) log β + log ∑m

j=1 ∑n
i=1 s(xi · yj)

q.

Since 1− q < 0, for q ∈ (1, ∞), we get

Hs
q(X/Y) = q

1−q log

(
m
∑

j=1
s(yj) ‖ sX/yj

‖q

)
≥ q−1

1−q log β + 1
1−q log

m
∑

j=1

n
∑

i=1
s(xi · yj)

q = − log β + Hs
q(X ∨Y).

�

Remark 4. Let X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) be partitions in (A, ·).
Since X ∨ Y = Y ∨ X, it holds also the inequality Hs

q(X ∨ Y) ≤ Hs
q(Y/X) + log α, where

α = max
{

1
s(xi)

; xi ∈ supp(s), i = 1, 2, . . . , n
}

.

Corollary 2. Let X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym) be partitions in (A, ·). Then:

(i) Hs
q(X ∨Y) ≤ Hs

q(X) + log β;

(ii) Hs
q(X ∨Y) ≤ Hs

q(Y) + log α,

where β = max
{

1
s(yj)

; yj ∈ supp(s), j = 1, 2, . . . , m
}

, and α = max
{

1
s(xi)

; xi ∈ supp(s), i = 1, 2, . . . , n
}

.

Proof. The claim is a direct consequence of Theorems 6 and 9. �

Definition 12. Let X, Y be partitions in (A, ·). We define the Rényi information of order q, where
q ∈ (0, 1) ∪ (1, ∞), about X in Y by the formula

Is
q(X, Y) = Hs

q(X)− Hs
q(X/Y). (12)

Theorem 10. Let X, Y be partitions in (A, ·). Then lim
q→1

Is
q(X, Y) = Is(X, Y), where Is(X, Y) is the mutual

information of partitions X, Y defined by Equation (4).

Proof. The claim is obtained as a direct consequence of Theorems 1 and 5. �

Theorem 11. For arbitrary partitions X, Y in (A, ·), it holds Is
q(X, Y) ≥ 0. Moreover, if X, Y are statistically

independent with respect to s, then Is
q(X, Y) = 0.

Proof. The claim is a direct consequence of Theorems 6 and 7. �

5. The Rényi Divergence in a Product MV-Algebra

In this section, we introduce the concept of the Rényi divergence in a product MV-algebra
(A, ·). We will prove basic properties of this quantity, and for illustration, we provide some
numerical examples.

Definition 13. Let s, t be states on a given product MV-algebra (A, ·), and X = (x1, x2, . . . , xn) be a partition
in (A, ·) such that t(xi) > 0, for i = 1, 2, . . . , n. Then we define the Rényi divergence DX

q (s ‖ t) of order q,
where q ∈ (0, 1) ∪ (1, ∞), with respect to X as the number

DX
q (s ‖ t) =

1
q− 1

log
n

∑
i=1

s(xi)
qt(xi)

1−q. (13)
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Remark 5. The logarithm in the Formula (13) is taken to the base 2 and information is measured in bits. It is
easy to see that DX

q (s ‖ s) = 0. Namely,

DX
q (s ‖ s) =

1
q− 1

log
n

∑
i=1

s(xi)
qs(xi)

1−q =
1

q− 1
log

n

∑
i=1

s(xi) =
1

q− 1
log 1 = 0.

The following theorem states that for q→ 1 the Rényi divergence DX
q (s ‖ t) converges to the

Kullback–Leibler divergence DX(s ‖ t) defined by the Formula (5).

Theorem 12. Let s, t be states on a given product MV-algebra (A, ·), and X = (x1, x2, . . . , xn) be a partition
in (A, ·) such that t(xi) > 0, for i = 1, 2, . . . , n. Then

lim
q→1

DX
q (s ‖ t) =

n

∑
i=1

s(xi) · log
s(xi)

t(xi)
.

Proof. For every q ∈ (0, 1) ∪ (1, ∞), we have

DX
q (s ‖ t) =

1
q− 1

log
n

∑
i=1

s(xi)
qt(xi)

1−q =
f (q)
g(q)

,

where f , g are continuous functions defined, for every q ∈ (0, ∞), in the following way:

f (q) = log
n

∑
i=1

s(xi)
qt(xi)

1−q, g(q) = q− 1.

By continuity of the functions f , g, we have lim
q→1

f (q) = f (1) = log
n
∑

i=1
s(xi)t(xi)

0 = log 1 = 0,

and lim
q→1

g(q) = g(1) = 0. Using L’Hôpital’s rule, we get that lim
q→1

DX
q (s ‖ t) = lim

q→1

f ′(q)
g′(q) , under

the assumption that the right hand side exists. Since g′(q) = 1, and f ′(q) = h′(q)
h(q) ln 2 , where

h(q) =
n

∑
i=1

s(xi)
qt(xi)

1−q, h′(q) =
n

∑
i=1

s(xi)
qt(xi)

1−q ln
s(xi)

t(xi)
,

we obtain

lim
q→1

DX
q (s ‖ t) = lim

q→1
f ′(q) =

1
ln 2

n

∑
i=1

s(xi) ln
s(xi)

t(xi)
=

n

∑
i=1

s(xi) log
s(xi)

t(xi)
.

�

The following theorem states that the Rényi entropy Hs
q(X) can be expressed in terms of the Rényi

divergence DX
q (s ‖ t) of a state s from a state t that is uniform over X.

Theorem 13. Let s be a state on a product MV-algebra (A, ·), and X = (x1, x2, . . . , xn) be a partition in (A, ·).
If a state t : A→ [0, 1] is uniform over X, i.e., t(xi) =

1
n , for i = 1, 2, . . . , n, then

Hs
q(X) = Ht

q(X)− DX
q (s ‖ t) = log n− DX

q (s ‖ t).
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Proof. Let us calculate:

DX
q (s ‖ t) = 1

q−1 log
n
∑

i=1
s(xi)

qt(xi)
1−q = 1

q−1 log
n
∑

i=1
s(xi)

q
(

1
n

)1−q

= 1
q−1 log

(
1
n

)1−q
+ 1

q−1 log
n
∑

i=1
s(xi)

q = log n− Hs
q(X).

On the other hand, as shown by Example 3, it holds Ht
q(X) = log n. �

Example 7. Consider any product MV-algebra (A, ·), and a state s : A→ [0, 1]. In Example 5, we dealt with
the partition X = (x, u − x) with s(x) = 1

3 , and we calculated the Rényi entropy Hs
1/2(X)

.
= 0.958 bit.

Let t : A→ [0, 1] be a state uniform over X, i.e., t(x) = t(u− x) = 1
2 . Then the Rényi divergence DX

q (s ‖ t)

of order q = 1
2 is DX

1/2(s ‖ t) = −2 log
(√

1
3 ·

1
2 +

√
2
3 ·

1
2

)
.
= 0.04186 bit, and Ht

1/2(X)− DX
1/2(s ‖ t) .

=

1− 0.04186 .
= 0.958 bit. So, the equality Hs

1/2(X) = Ht
1/2(X)− DX

1/2(s ‖ t) holds.

Theorem 14. Let s, t be states on a given product MV-algebra (A, ·), and X = (x1, x2, . . . , xn) be a partition
in (A, ·) such that s(xi) > 0, and t(xi) > 0, for i = 1, 2, . . . , n. Then DX

q (s ‖ t) ≥ 0 with the equality if and
only if s(xi) = t(xi), for i = 1, 2, . . . , n.

Proof. The inequality follows by applying the Jensen inequality to the function ϕ defined by
ϕ(x) = x1−q, x ∈ [0, ∞), and putting ci = s(xi), ai =

t(xi)
s(xi)

, for i = 1, 2, . . . , n.
Let us consider the case of q ∈ (1, ∞). Then 1− q < 0, therefore the function ϕ is convex. By the

Jensen inequality we obtain

1 =

(
n

∑
i=1

t(xi)

)1−q

=

(
n

∑
i=1

s(xi)
t(xi)

s(xi)

)1−q

≤
n

∑
i=1

s(xi)

(
t(xi)

s(xi)

)1−q

=
n

∑
i=1

s(xi)
qt(xi)

1−q, (14)

and consequently

log
n

∑
i=1

s(xi)
qt(xi)

1−q ≥ log 1 = 0.

Since 1
q−1 > 0, for q ∈ (1, ∞), it follows that

DX
q (s ‖ t) =

1
q− 1

log
n

∑
i=1

s(xi)
qt(xi)

1−q ≥ 0.

Let q ∈ (0, 1). Then the function ϕ is concave, and therefore we get
n
∑

i=1
s(xi)

qt(xi)
1−q ≤ 1,

and consequently

log
n

∑
i=1

s(xi)
qt(xi)

1−q ≤ log 1 = 0.

Since 1
q−1 < 0, for q ∈ (0, 1), it follows that

DX
q (s ‖ t) =

1
q− 1

log
n

∑
i=1

s(xi)
qt(xi)

1−q ≥ 0.

The equality in (14) holds if and only if t(xi)
s(xi)

is constant, for i = 1, 2, . . . , n, i.e., if and only if
t(xi) = k · s(xi), for i = 1, 2, . . . , n. By summing over all i = 1, 2, . . . , n, we get ∑n

i=1 t(xi) = k ·∑n
i=1 s(xi),

which implies that k = 1. Hence s(xi) = t(xi), for i = 1, 2, . . . , n. Therefore, we conclude that
DX

q (s ‖ t) = 0 if and only if s(xi) = t(xi), for i = 1, 2, . . . , n. �
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Corollary 3. Let s be a state on a product MV-algebra (A, ·), and X = (x1, x2, . . . , xn) be a partition in (A, ·)
such that s(xi) > 0, for i = 1, 2, . . . , n. Then Hs

q(X) ≤ log n with the equality if and only if the state s is
uniform over X.

Proof. Let t : A→ [0, 1] be a state uniform over X, i.e., t(xi) =
1
n , for i = 1, 2, . . . , n. Then according to

Theorems 14 and 13, it holds
0 ≤ DX

q (s ‖ t) = log n− Hs
q(X),

which implies that Hs
q(X) ≤ log n. Since the equality DX

q (s ‖ t) = 0 applies if and only if s(xi) = t(xi),
for i = 1, 2, . . . , n, the equality Hs

q(X) = log n holds if and only if the state s is uniform over X. �

Example 8. Let us consider any product MV-algebra (A, ·), and states s1, s2, s3 defined on it. Let x ∈ A with
si(x) = pi, where pi ∈ (0, 1), for i = 1, 2, 3. Then si(u− x) = 1− pi, for i = 1, 2, 3. Further, we consider the
partition X = (x, u− x) in (A, ·). Putting p1 = 1

2 , p2 = 1
3 , p3 = 1

4 , and q = 2, we obtain

DX
2 (s1 ‖ s2) = log

[(
1
2

)2
·
(

1
3

)−1
+

(
1
2

)2
·
(

2
3

)−1
]

.
= 0.1699 bit;

DX
2 (s1 ‖ s3) = log

[(
1
2

)2
·
(

1
4

)−1
+

(
1
2

)2
·
(

3
4

)−1
]

.
= 0.4150 bit;

DX
2 (s2 ‖ s3) = log

[(
1
3

)2
·
(

1
4

)−1
+

(
2
3

)2
·
(

3
4

)−1
]

.
= 0.0525 bit.

For q = 1
2 , we get DX

q (s1 ‖ s2)
.
= 0.04186 bit; DX

q (s1 ‖ s3)
.
= 0.1 bit; DX

q (s2 ‖ s3)
.
= 0.0122 bit. Evidently,

in both cases mentioned above,

DX
q (s1 ‖ s3) > DX

q (s1 ‖ s2) + DX
q (s2 ‖ s3).

This means that the triangle inequality for the Rényi divergence generally does not apply. The result means that
it is not a metric in a true sense.

Theorem 15. Let s, t be states on a given product MV-algebra (A, ·), and X = (x1, x2, . . . , xn) be a partition
in (A, ·) such that s(xi) > 0, and t(xi) > 0, for i = 1, 2, . . . , n. Then:

(i) 0 < q < 1 implies DX
q (s ‖ t) ≤ DX(s ‖ t);

(ii) q > 1 implies DX
q (s ‖ t) ≥ DX(s ‖ t),

where

DX(s ‖ t) =
n

∑
i=1

s(xi) · log
s(xi)

t(xi)
.

Proof. We prove the claims by applying the Jensen inequality to the concave function ϕ defined,

for every x ∈ (0, ∞), by ϕ(x) = log x. If we put ci = s(xi), and ai =
(

s(xi)
t(xi)

)q−1
, for i = 1, 2, . . . , n,

in the inequality (6), we get

log
n
∑

i=1
s(xi)

qt(xi)
1−q = log

n
∑

i=1
s(xi)

(
s(xi)
t(xi)

)q−1

≥
n
∑

i=1
s(xi) log

(
s(xi)
t(xi)

)q−1
= (q− 1)

n
∑

i=1
s(xi) log s(xi)

t(xi)
.
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(i) Suppose that 0 < q < 1. Then 1
q−1 < 0, and therefore we obtain

DX
q (s ‖ t) =

1
q− 1

log
n

∑
i=1

s(xi)
qt(xi)

1−q ≤
n

∑
i=1

s(xi) log
s(xi)

t(xi)
= DX(s ‖ t).

(ii) Suppose that q > 1. Then 1
q−1 > 0, and we get

DX
q (s ‖ t) =

1
q− 1

log
n

∑
i=1

s(xi)
qt(xi)

1−q ≥
n

∑
i=1

s(xi) log
s(xi)

t(xi)
= DX(s ‖ t).

�

To illustrate the result of previous theorem, let us consider the following example which is a
continuation to Example 6.

Example 9. Consider the product MV-algebra (A, ·) from Example 6 and the real functions F1, F2 defined by
F1(x) = x, F2(x) = x2, for every x ∈ [0, 1]. On the product MV-algebra (A, ·) we define two states s1, s2 by
the formulas si( f ) =

∫ 1
0 f (x)dFi(x), i = 1, 2, for any element f of A. In addition, we consider the partition

X =
(

I[0, 1
3 )

, I[ 1
3 ,1]

)
in (A, ·). It can be easily calculated that it has the s1-state values 1

3 , 2
3 of the corresponding

elements, and the s2-state values 1
9 , 8

9 of the corresponding elements. By using Formula (5), it can be calculated the
Kullback–Leibler divergences DX(s1 ‖ s2)

.
= 0.25163 bit, and DX(s2 ‖ s1)

.
= 0.19281 bit. Further, by simple

calculations we obtain: DX
2 (s1 ‖ s2)

.
= 0.58496 bit, DX

2 (s2 ‖ s1)
.
= 0.28951 bit, DX

1/3(s1 ‖ s2)
.
= 0.0707 bit,

and DX
1/3(s2 ‖ s1)

.
= 0.07736 bit. As can be seen, for q = 1

3 , we have DX
q (s1 ‖ s2) < DX(s1 ‖ s2),

DX
q (s2 ‖ s1) < DX(s2 ‖ s1), and for q = 2, we have DX

q (s1 ‖ s2) > DX(s1 ‖ s2), DX
q (s2 ‖ s1) >

DX(s2 ‖ s1). The obtained results correspond to the claim of Theorem 15. Based on previous results, we
can also see that the Rényi divergence DX

q (s ‖ t), as well as the Kullback–Leibler divergence DX(s ‖ t),
is not symmetrical.

6. Conclusions

The aim of this paper was to generalize the results concerning the Shannon entropy and
Kullback-Leibler divergence in a product MV-algebra given in [22] and [24] to the case of Rényi
entropy and Rényi divergence. The results are contained in Sections 3–5. In Section 3, we have
introduced the concept of Rényi entropy Hs

q(X) of a partition X in a product MV-algebra (A, ·), and we
examined properties of this entropy measure. In Section 4, we have defined the conditional Rényi
entropy of partitions in the studied algebraic structure. It was shown that the proposed concepts
are consistent, in the case of the limit of q→ 1, with the Shannon entropy of partitions defined and
studied in [22]. Moreover, it was shown that the Rényi entropy Hs

q(X) as well as the conditional Rényi
entropy Hs

q(X/Y) are monotonically decreasing functions of parameter q. In the final part of Section 4,
we have defined the Rényi information about a partition X in a partition Y as an example for the
further usage of the proposed concept of the conditional Rényi entropy. Section 5 was devoted to the
study of Rényi divergence in (A, ·). We have proved that the Kullback–Leibler divergence of states
defined on a product MV-algebra can be derived from their Rényi divergence as the limiting case for q
going to 1. Theorem 14 allows interpreting the Rényi divergence as a distance measure between two
states (over the same partition) defined on a given product MV-algebra. In addition, we investigated
the relationship between the Rényi entropy and the Rényi divergence (Theorem 13), as well as the
relationship between the Rényi divergence and Kullback–Leibler divergence (Theorem 15), in a
product MV-algebra.

In the proofs we used L’Hôpital’s rule, the triangle inequality of q- norm, and the Jensen inequality.
To illustrate the results, we have provided several numerical examples.
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As has been shown in Example 1, the model studied in this article generalizes the classical case;
that is, the Rényi entropy and the Rényi divergence defined in this paper are a generalization of the
classical concepts of Rényi entropy and Rényi divergence. On the other hand, MV-algebras enable to
study more general situations. We note that MV-algebras can be for example interpreted by means of
Ulam some games (see e.g., [35–37]). The obtained results could therefore be useful for the researches
on this subject.

In Example 2, we have mentioned that the full tribe of fuzzy sets represents a special case of
product MV-algebras; therefore, the results of the article can be immediately applied to this important
class of fuzzy sets. We recall that by a fuzzy subset of a non-empty set Ω (cf. [38]), we understand
any map f : Ω→ [0, 1]. The value f (ω) is interpreted as the degree of belongingness of ω ∈ Ω to the
considered fuzzy set f . In [39], Atanassov has generalized the fuzzy sets by introducing the idea of an
intuitionistic fuzzy set, a set having with each member a degree of belongingness as well as a degree
of non-belongingness. From the application point of view, it is interesting that to a given class F of
intuitionistic fuzzy sets can be constructed an MV-algebra A such that F can be embedded to A. Also,
an operation of product on F can be introduced by such a way that the corresponding MV-algebra is a
product MV-algebra. Therefore, all the results of this article can also be applied to the intuitionistic
fuzzy case.
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14. Di Nola, A.; Dvurečenskij, A.; Hyčko, M.; Manara, C. Entropy on Effect Algebras with the Riesz

Decomposition Property II: MV-Algebras. Kybernetika 2005, 41, 161–176.

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/TIT.2012.2192713
http://dx.doi.org/10.1109/TIT.2014.2357799
http://dx.doi.org/10.3390/ecea-4-05030
http://dx.doi.org/10.1016/j.aop.2004.01.002
http://dx.doi.org/10.1090/S0002-9947-1958-0094302-9


Entropy 2018, 20, 587 19 of 19
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