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Comparison of six methods for the detection of causality in a bivariate time series
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In this comparative study, six causality detection methods were compared, namely, the Granger vector
autoregressive test, the extended Granger test, the kernel version of the Granger test, the conditional mutual
information (transfer entropy), the evaluation of cross mappings between state spaces, and an assessment of
predictability improvement due to the use of mixed predictions. Seven test data sets were analyzed: linear coupling
of autoregressive models, a unidirectional connection of two Hénon systems, a unidirectional connection of chaotic
systems of Rössler and Lorenz type and of two different Rössler systems, an example of bidirectionally connected
two-species systems, a fishery model as an example of two correlated observables without a causal relationship,
and an example of mediated causality. We tested not only 20 000 points long clean time series but also noisy
and short variants of the data. The standard and the extended Granger tests worked only for the autoregressive
models. The remaining methods were more successful with the more complex test examples, although they
differed considerably in their capability to reveal the presence and the direction of coupling and to distinguish
causality from mere correlation.
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I. INTRODUCTION

Detection of causality is not a closed issue, even for a
bivariate case. Applying different causal methods to real-world
data very often leads to contradictory results. New methods
that seem to offer superior solutions at first will later prove
to be effective only for suitably selected examples. This
experience forced us to test multiple currently used causality
methods on artificially generated data with clearly defined
causal relationships. In this study, we focused on detecting uni-
and bidirectional causal links between just two systems, each
of which was represented by a single time series. Unlike other
comparative studies, a wide variety of methodologies have
been tested here on different types of time series. This has en-
abled us to demonstrate clearly that use of a particular method
for inappropriate type of data can have critical consequences.
Moreover, as shown in the following, in some cases, even meth-
ods designed specifically for a particular type of data, produced
conflicting results. This calls into question the reliability of
some relatively popular methods and shows that it is important
to keep a critical eye on the limits of the individual methods.

Six frequently used methods were tested. The first one
concerns the mathematical approach proposed by Granger
in 1969 [1]. In Granger’s sense, a time series x is said to
cause y if it can be shown, through statistical hypothesis tests,
that past x values provide significant information about the
future values of y. Using Granger’s test is problematic in the
case of dynamically linked variables. Moreover, the initially
linear Granger concept also requires generalizations to enable
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the investigation of complex nonlinear processes. Therefore,
new approaches have been proposed, including the extended
Granger causality test (EG) [2], which is the second method
examined in this study. EG operates in state spaces, but with
direct reference to the initial Granger’s idea. The method starts
with a standard delay embedding reconstruction [3]. Then,
locally, the dynamics is approximated using an autoregressive
(AR) model. Granger’s causality is assessed on short pieces of
the trajectory, and the results are averaged over the entire state
portrait.

The third method represents another way of generalizing
the original Granger test for nonlinear cases. It is a kernel
version of the Granger test (KG), introduced in Ref. [4].
The method performs linear Granger causality in the feature
space of suitable kernel functions, assuming arbitrary degree
of nonlinearity.

The fourth method is based on transfer entropy or con-
ditional mutual information [5,6]. This information-theoretic
measure assesses the change in uncertainty of the future of a
signal when estimates with and without additional knowledge
of another system are compared.

The fifth method belongs to approaches that rely on evalu-
ating the distances of conditioned neighbors in reconstructed
state spaces. It works with the assumption that the investigated
time series x and y are manifestations of dynamical systems X

and Y , respectively. Therefore, as a first step, a d-dimensional
manifold MX is reconstructed from lags of observable x so that
the state of the system in time t is

[x(t),x(t − τ ),x(t − 2τ ), . . . ,x(t − (d − 1)τ )].

The manifold MY is reconstructed analogously. Given certain
conditions, the reconstructed manifold is diffeomorphic to the
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original one [3]. Consequently, they share the same features
in many ways. Most importantly for us, points that are close
in the original manifold are also close in the reconstruction.
Several methods have been proposed to infer causality from
the asymmetry of cross mappings between close neighbors in
MX and MY [7–13]. Different authors have defined different
criteria to quantify the identification capability. As shown later,
the idea can be applied through measures such as M or L
introduced in Refs. [11] and [12] or through a method called
convergent cross mapping [13].

The state space reconstruction, which is essential for some
of the tested methods, is determined by two parameters,
namely, the dimension d of the reconstructed space and the
delay τ . The choice of parameters is usually based on the
method of nearest neighbors and the first minimum of mutual
information, respectively. The optimal value of d must be at
least as large as the dimensionality of the original attractor.
It is also true that the length of the embedding time window
(τ.d) is more important than the delay time and the embedding
dimension separately [14].

The last reviewed method evaluates predictability improve-
ment (PI). It uses mixed predictions [15] and again belongs to
the state-space approaches. It determines whether the predic-
tion of a time series made in a reconstructed space improves
when data from another system are included in the space
reconstruction. The potential of this idea has been identified in
Refs. [16,17].

In the following section, we introduce the data sets selected
for the comparison of the methods. Then, the six methods
for detecting causal relationships are explained. Three of the
methods were originally designed to offer their results in
graphical form only. Here, these methods are complemented
by surrogate analysis to allow a more objective comparison of
the performance of the methods. The fourth section presents
the results.

It is confirmed that the traditional Granger’s test is a clear
choice, fast and reliable when applied to appropriate data.
But the new methods designed for complex data are far from
reliable. It turns out, for example, that some of the popular
methods have extremely low specificity—they produce a large
number of false detections of causality. Finally, the findings
are summarized and discussed.

II. DATA

To test the methods described below, we used the next seven
examples of coupled systems.

A. Coupled autoregressive models

In the first experiment, we studied the next system consist-
ing of two bidirectionally coupled autoregressive processes of
first order,

x(t) = 0.5x(t − 1) + 0.2y(t − 1) + εx(t)

y(t) = Cx(t − 1) + 0.7y(t − 1) + εy(t), (1)

where εx(t) and εy(t) are independent Gaussian random pro-
cesses with zero mean and common variance σ 2

x = σ 2
y = 0.1.

The parameter C regulates the coupling strength; for C = 0,
the coupling is unidirectional: Only system Y drives X. In

x1 x2

y1 y2

FIG. 1. Interaction graph for the coupling of two Hénon systems.

our experiment, we considered C ∈ {0,0.2,0.4,0.6}. For each
coupling, we generated a bivariate time series {x(t),y(t)}t of
length N = 120 000 (random initial conditions extracted from
the normal distribution with zero mean and unit variance) and
the initial 105 iterations were discarded.

B. Hénon → Hénon

In the second example, we used two unidirectionally cou-
pled identical Hénon maps. The first two lines correspond to
the driving system X, and the last two equations describe the
response system Y :

x1(t + 1) = 1.4 − x2
1 (t) + 0.3x2(t)

x2(t + 1) = x1(t)

y1(t + 1) = 1.4 − [
Cx1(t)y1(t) + (1 − C)y2

1 (t)
] + 0.3y2(t)

y2(t + 1) = y1(t). (2)

C controls the strength of the coupling. The so-called
interaction graph (see Fig. 1), which is easy to interpret
from Eqs. (2), shows that the systems are coupled through
a one-way driving relationship between variables x1 and y1.
In the interaction graph, the nodes representing the variables
are connected by directed edges whenever one variable directly
drives another. As emphasized by the authors in Ref. [18], both
direct and indirect interactions can be recovered, although they
cannot be reliably distinguished using the comparisons of state
space reconstructions.

We generated pairs of time series x1, y1 for 21 coupling
strengths, chosen from 0 to 0.8 with a step of 0.04. Coupling
strengths C above 0.7 give rise to synchronization [8]. In each
case, the starting point was [0.7,0,0.91,0.7].

The first 1000 data points were discarded, whereas the next
20 000 ones were saved. The same Hénon-Hénon system was
studied in Refs. [6,8,19,20].

C. Rössler → Lorenz

The next example was a unidirectional coupling of two
different chaotic systems. The Rössler system X drives the
Lorenz system Y :

ẋ1 = −6(x2 + x3)

ẋ2 = 6(x1 + 0.2x2)

ẋ3 = 6[0.2 + x3(x1 − 5.7)]

ẏ1 = 10(−y1 + y2)

ẏ2 = 28y1 − y2 − y1y3 + Cx2
2

ẏ3 = y1y2 − 8
3y3. (3)
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FIG. 2. Interaction graph for the Rössler system driving the
Lorenz system.

Generalized synchronization seems to take place just before
coupling C = 3 [19].

For testing purposes, we will assume that we know variable
x2 of the driving Rössler system and variable y2 of the driven
Lorenz system and we would like to recover the corresponding
causal link (see Fig. 2). The solutions were obtained numer-
ically by the fourth-order Runge-Kutta method. They were
computed for 21 coupling strengths chosen from 0 to 4 with
a step of 0.1. The starting point was [0,0,0.4,0.3,0.3,0.3]. The
first 1000 data points were discarded, whereas the next 20 000
data points were saved. As regards the sampling of the resulting
trajectory, one typical run around the attractor took about
10–15 points. The same example of the Rössler → Lorenz
system was studied, among others, in Refs. [6,11,14,19–21].

D. Rössler 0.5 → Rössler 2.5

In the next testing example, we used unidirectionally
coupled nonidentical Rössler systems at different coupling
strengths C:

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + 0.15x2

ẋ3 = 0.2 + x3(x1 − 10)

ẏ1 = −ω2y2 − y3 + C(x1 − y1)

ẏ2 = ω2y1 + 0.72y2

ẏ3 = 0.2 + y3(y1 − 10), (4)

where

ω1 = 0.5, ω2 = 2.515.

The two Rössler systems represent distinct dynamical
subsystems X and Y coupled through a one-way driving
relationship between variables x1 and y1. This causal link is
what we would like to recover. Mutual interconnections of
the variables may again be visualized by an interaction graph
(Fig. 3).

In total, 21 000 data points of x1 and y1 were generated by a
MATLAB solver of ordinary differential equations (ode45) at
an integration step of 0.3. The starting point was [0, 0, 0.4,
0, 0, 0.4]. The first 1000 data points were discarded. The

x1x2 x3

y1y2 y3

FIG. 3. Interaction graph for the coupling of two Rössler systems.

coupling strength C was chosen from 0 to 1.1 with a step
size of 0.1. The synchronization takes place at a coupling
of about 1. In addition, these systems also differ in that the
first is chaotic, whereas the other is quasiperiodic [6]. The
frequency ratio of about 1:5 used in this example is reminiscent
of cardiorespiratory interactions, where the influence of the
(slower) respiratory dynamics on the (faster) cardiac dynamics
is larger than in the opposite direction. The system was first
used in Ref. [6] to demonstrate that, in this case, the problem of
detecting directionality is much more challenging than in cases
of two systems with more closely related natural frequencies.

E. Bidirectional two-species model

The next example represents a bidirectional causality be-
tween two coupled logistic difference equations:

x(t + 1) = x(t)[3.78 − 3.78x(t) − 0.07y(t)]

y(t + 1) = y(t)[3.77 − 3.77y(t) − 0.08x(t)]. (5)

Like in Ref. [22], the system was initialized at x(1) = 0.2 and
y(1) = 0.4 and was run for 21 000 time steps. The last 20 000
data points were saved.

F. Fishery model

The fishery model, which was also used in Refs. [13] and
[15], represents the situation of a correlation between systems
that can be falsely declared as causality. We analyzed a standard
logistic model of two noninteracting fish populations that share
common environmental (e.g., weather) forcing:

Rx(t + 1) = x(t){3.1 [1 − x(t)]} exp(0.5 Z)

Ry(t + 1) = y(t){2.9 [1 − y(t)]} exp(0.6 Z)

x(t + 1) = 0.4 x(t) + max[Rx(t − 3),0]

y(t + 1) = 0.35 y(t) + max[Ry(t − 3),0]. (6)

The variables x and y denote the sizes of the fish populations,
Rx and Ry are the recruitments of the populations, and Z is
an environmental influence represented here by a red noise.
Figure 4 shows the corresponding interaction graph. We
generated data with starting points Rx(i) = Ry(i) = x(i) =
y(i) = 0.5 for i ∈ {1,2,3,4}. Z was defined as follows:

Z(i) = p

i∑
j=i−14

Z′(j ),

Z′ ∼ N (0,1).

The variable p was chosen so that var(Z) was equal to 1.
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X Y

Z

FIG. 4. Interaction graph for the fishery model (6) describing two
populations, X and Y , driven by an environmental variable Z.

G. Mediated link

In the last example, like in the fishery case, two uncoupled
subsystems X and Y are driven by the third one, Z. However,
we only tested the case with a coupling of C = 0.06 for which
Z and X were already synchronized, which was reflected as
a mediated causal effect from X to Y . The equations are as
follows:

ż1(t) = −ω1z2(t) − z3(t)

ż2(t) = ω1z1(t) + 0.15z2(t)

ż3(t) = 0.2 + z3(t)(z1(t) − 10)

ẋ1(t) = −ω2x2(t) − x3(t) + C[z1(t) − x1(t)]

ẋ2(t) = ω2x1(t) + 0.15x2(t)

ẋ3(t) = 0.2 + x3(t)[x1(t) − 10]

ẏ1(t) = −ω3y2(t) − y3(t) + C[z1(t) − y1(t)]

ẏ2(t) = ω3y1(t) + 0.15y2(t)

ẏ3(t) = 0.2 + y3(t)[y1(t) − 10]. (7)

The frequencies ω1, ω2, and ω3 were selected to have
the following, approximately unit, ratios: ω1 = 0.985, ω2 = 1,
and ω3 = 1.015, respectively.

The data were generated by numerical integration based
on the adaptive Bulirsch-Stoer method [23] using a sampling
interval of 0.314. The initial 5000 samples were discarded,
whereas the next 20 000 samples were saved. We assumed that
the only two known variables were x1 and y1.

Faes et al. suggested that, sometimes, indicators of causal
relations can be enhanced in the presence of noise compared to
clean data [24]. To see if this is true for our examples, we also
prepared noisy versions of the test time series. Specifically,
we added white Gaussian noise, which is considered a suitable
model of noise typically present in real-world data. The signal-
to-noise ratio per sample was 20 dB, which corresponded to
an amplitude ratio of 10 and a power ratio of 100.

III. METHODS

A. Granger’s vector autoregressive test

Assume two jointly vector-valued stochastic variables x

and y. One approach to evaluate the causal relations between
two time series is to examine if the prediction of one series
based on the information about the past of the series itself
could be improved by incorporating the information about
the past of the other. Granger (1969) [1] formalized this idea
of Wiener (1956) [25] in terms of the vector autoregressive
(VAR) modeling of stochastic processes. Specifically, variable

x is said to Granger-cause variable y if the inclusion of past
observations of x reduces the variance of the prediction error of
y in a VAR model. In its simplest form, the Granger causality
from x to y is motivated as follows: suppose that time series x

and y can be described by a bivariate autoregressive model

x(t) =
p∑

j=1

axx,j x(t − j ) +
p∑

j=1

axy,j y(t − j ) + εx/y(t)

y(t) =
p∑

j=1

ayx,j x(t − j ) +
p∑

j=1

ayy,j y(t − j ) + εy/x(t),

where p is the model order; axx,j , axy,j , ayx,j , and ayy,j are
coefficients of the model; and (εx/y(t),εy/x(t))

′
is a (2 × 1)

unobservable zero mean white noise vector process with time-
invariant covariance matrix �. In a bivariate VAR(p) model for
(x,y)

′
, x fails to Granger-cause y if var(εy/x) > var(εy), where

εy(t) is defined as

y(t) =
p∑

j=1

ay,j y(t − j ) + εy(t).

The likelihood ratio test statistic for the null hypothesis of non-
Granger causality x to y, i.e., H0 : ∀j : ayx,j = 0, is defined
as (

R2
H0

− R2
)/

p

R2/(T − 3p)
∼as. Fp,T −3p

and under the null hypothesis has an asymptotic F distribution
with p and T − 3p degrees of freedom, where R2

H0
= ∑

t ε̂
2
y (t)

is the sum of the squared residuals of the restricted model given
by H0, R

2 = ∑
t ε̂

2
y/x(t) is the sum of the squared residuals

of the full model, and T is the number of observations.
Rejection of the null hypothesis means that the coefficients
corresponding to the data from variable x are statistically
significantly different from zero, and it is concluded that the
processx Granger-causesy. The roles of the two time series can
be reversed to investigate the causal influence in the opposite
direction. Note that the model order p for the VAR model is
determined using a model selection criterion, with the most
common information criteria being the Akaike information
criterion and the Schwartz-Bayesian information criterion.
Unknown coefficients of the models may be estimated by
ordinary least squares.

B. Extended Granger test

Although a rather general class of covariance stationary
multivariate processes can be modeled as VARs, and not
just stochastic processes generated by a linear autoregressive
scheme, it will be shown under Results that Granger’s VAR
test often fails to identify the correct causal influence for
nonlinear time series. Chen et al. proposed an extension
of Granger’s approach to nonlinear multivariate time series
called extended Granger causality [2]. The authors started
with standard delay-coordinate state space reconstruction and
assumption that one can approximate the dynamics linearly.
Then, the original Granger’s idea about causality detection was
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applied to δ neighborhoods and the results were averaged over
the entire state portrait of the dynamics.

In the first step of the procedure, the dynamics is recon-
structed using delay vector Z(t) = [X(t),Y (t))], where

X(t) = [x(t),x(t − τ ), . . . ,x(t − (d − 1)τ )],

Y (t) = [y(t),y(t − τ ), . . . ,y(t − (d − 1)τ )],

where τ is the time delay and di is the embedding dimension.
In the next step, a VAR model

x(t) =
d∑

j=1

axx,j x(t − jτ )

+
d∑

j=1

axy,j y(t − jτ ) + εx/y(t),

y(t) =
d∑

j=1

ayx,j x(t − jτ )

+
d∑

j=1

ayy,j y(t − jτ ) + εy/x(t)

and an autoregressive model for y time series

y(t) =
d∑

j=1

ay,j y(t − jτ ) + εy(t)

are fitted for all points in the neighborhood � of a reference
point Z0, where � = {Z : |Z − Z0| � δ}. Then the error ratio
is calculated,

1 − var(εy/x)

var(εy)
, (8)

which can be interpreted as the ratio of the variation in y,
which is not explained by y itself and can be explained by
x. The fitting process is repeated for a randomly selected set
of reference points Z0’s. The causal relationship from x to y

is evaluated by the extended Granger causality index (EGCI),
which is estimated as the average of the values (8) from all
selected local neighborhoods. Analogously, for the evaluation
of the causal relationship from y to x, the autoregressive
model on the individual x is fitted in the second step of
the procedure and EGCI is determined as the average of
1 − var(εx/y)/var(εx) from all selected local neighborhoods.
The critical issue of this method is how to determine the optimal
neighborhood size. Therefore, EGCI is finally displayed as a
function of δ and the conclusion should result from a visual
assessment of the function. There has not been any statistical
test proposed to identify the causal relationship between the
series.

However, due to more objective comparison of results,
we had to add a testing method. We adopted the procedure
that draws on employing Fourier transform surrogates (FT
surrogates) [26]. For a suitable δ, the surrogates were used
to compute the EGCI in the same way as was done for the
original data. We used 50 surrogates, and the obtained set
of EGCI values was characterized by its empirical mean and
standard deviation (SD). Comparing the EGCI obtained for the

original data with the empirical distribution of the surrogates,
we inferred the significance of the EGCI value if it was greater
than the surrogates’ mean+2SD.

C. Kernel Granger test

Another attempt to extend Granger causality to nonlinear
cases by using the theory of reproducing kernel Hilbert spaces
was proposed in Ref. [4]. The method investigates Granger
causality in the feature space of suitable kernel functions.

Let X(t) = {x(t),x(t − 1), . . . ,x[t − (m − 1)]}, Y (t) =
{y(t),y(t − 1), . . . ,y[t − (m − 1)]}, and Z(t) = [X(t),Y (t)].

Denote u1, . . . ,um the eigenvectors of matrix K with
elements Kij = k(Y (i),Y (j )), where k is a kernel function.

Let H ⊆ RT −m be the range of the matrix K . Then, the
estimate of y(t) based on y(t − 1), . . . ,y(t − m), denoted as
ỹ(t), is the projection of y(t) on the space H . In other words,
ỹ(t) = Py(t), where P = ∑

uiu
T
i is the projector on H .

Analogously for the estimate of y(t) based on y(t −
1), . . . ,y(t − m),x(t − 1), . . . ,x(t − m), denoted as ỹ

′
(t), we

have ỹ
′
(t) = P

′
y(t), where P

′
is the projector on H

′
and

H
′ ⊆ RT −m is the range of matrix K

′
with elements K

′
ij =

k(Z(i),Z(j )). The space H
′
(H

′ ⊆ H ) may be decomposed as
H

′ = H ⊗ H⊥, where H⊥ is the space of the vectors of H
′

orthogonal to the vectors of H . The space H⊥ is the range of
the matrix K̃ = K

′ − PK
′ − K

′
P + PK

′
P .

Calling P ⊥ the projector on H⊥, the causality index
to detect the causal relation X → Y can be written as∑

t (P
⊥y(t))2/

∑
t [y(t) − ỹ(t)]2. To avoid problems with over-

fitting, the value
∑

t [P
⊥y(t)]2 is calculated as a sum of

squared statistically significant Pearson’s correlation coeffi-
cients {ri

′ } of eigenvectors of K̃ and observations of y, i.e.,∑
t [P

⊥y(t)]2 = ∑
i
′ r2

i
′ . Since only significant correlations,

which pass the Bonferroni test with expected fraction of false
positive equal to 0.05, are summed, the causality index, denoted
δF , is called filtered linear Granger causality index.

The roles of the two time series can be reversed to evaluate
the causality index in the opposite direction.

Authors in Ref. [4] considered two choices of kernel
functions: the inhomogeneous polynomial of the appropriate
order and the Gaussian kernel. In this study, we tested both
of these variants using the MATLAB code freely available on
Ref. [27].

This method, again, does not include statistical testing. The
presence of the causal link should be estimated visually from
the plotted δF values. Therefore, in this case, we also used
surrogate testing, analogously to the previous method.

D. Conditional mutual information (transfer entropy)

The next tested method is rooted in information theory
[28,29]. The method computes the conditional mutual in-
formation (CMI) between two variables of interest for an
appropriately selected condition. A significantly high value
of the CMI indicates the presence of a causal link between the
investigated variables. The direction of the link is determined
by the formulation of the condition. More details follow.

Let {x(t)}Lt=1 and {y(t)}Lt=1, L ∈ N be two finite time series
that represent the coordinates of two (possibly) coupled dy-
namical systems, namely X and Y , respectively. In the CMI,
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the measure for detection of coupling direction reads as

I (x(t),y(t + τ )|y(t),y(t − η), . . . ,y(t − Dη)). (9)

Given that (9) reaches a significantly high value, we indicate
an information flow between x(t) and y(t + τ ) conditioned on
y(t) and its history. If this holds for various forward lags τ ∈ N
after averaging, then we conclude that there exists a causal link
from X to Y . The inference of a link in the opposite direction
is provided by the CMI (9) in which the variables x and y are
swapped. Computationally, obtaining the CMI (9) relies on the
binning method [30]. Paluš proposed that the number of bins
Q ∈ N in each marginal should not exceed the bound d+1

√
N ,

i.e., Q � d+1
√

N , where d is the dimension of the data and N

is the sample size.
Although the univariate component x(t) is sufficient for a

proper application of the CMI method, the dimensionD ∈ Nof
condition (the embedding dimension) is important as it should
provide the access to the full information about the present
state of system Y .

Taken’s theorem [3] provides a theoretical justification
for mapping a D + 1-dimensional dynamical system by the
set of time-lagged coordinates y(t),y(t − η), . . . ,y(t − Dη),
where η ∈ N is the backward time lag used in the embedding
reconstruction.

Given the original data {y(t)}Lt=1 and the construction of
their shifted versions {y(t + η)}L−η

t=1 , η ∈ N, the value of η

appearing in the condition of (9) may be selected as the locus of
the first minimum on a graph showing the mutual information
between the original data and their shifted versions for various
η ∈ N [31].

As the forward time lag τ is not usually known a priori,
the CMI is computed as the function of τ . In our application,
τ ranges from 1 to 60. The resulting value of the CMI is then
computed as the average over the individual forward lags.

The crucial question is how to test if the obtained value
of the CMI is significant. In analogy to the previous two
methods, we adopted the procedure that draws on employing
Fourier transform surrogates [26]. Fifty surrogates were used
to compute the CMI in the same way as how it was done for the
original data. We inferred the significance of the CMI value if
it was greater than the surrogates’ mean+2SD.

E. Cross mappings

1. Measure L
Cross-mapping methods operate in state spaces of the

dynamical systems. Again, we only consider the knowledge
of the observables x and y. Therefore, as a first step, d-
dimensional manifolds MX and MY are reconstructed from
the lags of the observables x and y as explained above.

As stated in the Introduction, close points remain close
after the reconstruction and, therefore, the neighborhoods are
preserved. This is important since the detection of causality
between systems X and Y is based on assessing whether
the time indices of nearby points in the historical data of
manifold MY can be used to identify the nearby points in the
reconstructed manifold MX. If so, then we are dealing with a
causal link from X to Y .

Considering the direction X → Y , for points xi and its
neighbors, we can evaluate the rank-based measure L, which
was introduced by Chicharro and Andrzejak in 2009 [12]:

L(X|Y ) = 1

N

N∑
i=1

Gi(X) − Gk
i (X|Y )

Gi(X) − Gk
i (X)

,

where Gi(X) is the mean rank of all neighbors ( N
2 ), Gk

i (X)
is the minimal mean rank of k nearest neighbors ( k+1

2 ), and
Gk

i (X|Y ) is the Y -conditioned mean rank of k neighborhoods.

2. Convergent cross mapping

Convergent cross mapping (CCM), which was introduced
by Sugihara et al. in 2012 [13], builds on earlier cross-mapping
techniques and results in essentially the same conclusions as
if, for example, the above-mentioned L measure was used.
However, in this case, the evaluation of the success of the cross
mapping is done as follows.

Given k = d + 1 nearest neighbors, y(t) (based on the
information from MX) is approximated by

ŷ(t)|MX =
d+1∑
i=1

wiy(ti),

where

wi = ui

/ d+1∑
j=1

uj ,

ui = e
− d(X(t),X(ti ))

d(X(t),X(t1)) ,

and d(X,Y ) is the Euclidean distance between vectors X and
Y . The cross mapping from Y to X is defined analogously. The
skill of cross mapping is evaluated by the correlation coefficient
ρ between Y and Ŷ |MX. A high value of the correlation
indicates that system X drives system Y . By analogy, a high
correlation between X and X̂|MY indicates a causal link from
Y to X.

Sugihara et al. emphasize that a key feature of the CCM
method is the capability to distinguish causation from mere
correlation. Specifically, they monitored whether the cross-
mapped estimates converged to the correct values for an
increasing number of used data points. For causally coupled
systems, as opposed to merely correlated ones, the estimates
improve with the length of the time series. Lack of convergence
should indicate the absence of actual causality.

For the CCM and L, we used the same MATLAB imple-
mentation as in Ref. [32]. However, the method as proposed
in Ref. [13] requires obtaining the results through a visual
assessment of the images. For our purposes, extending the
method through some form of a statistical test or surrogate
analysis is necessary, as has been done, for example, in
Ref. [33] and also in this study.

F. Predictability improvement

The last method, with special attention attributed to the
optimization of the reconstructed space based on the weighting
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of each of its coordinates, was proposed in Ref. [15]. Because
of its computational demands, we decided to work with a
slightly simpler variant in this study.

The basic idea lies in the so-called mixed-state analysis
presented in Refs. [16,17]. Consider two systems X and Y ,
represented by time series x and y, respectively. Similarly,
as in the case of Granger’s meaning, we say that variable x

causes variable y if better prediction of y can be obtained
by using the information from both x and y rather than
by using only the information from y. However, unlike the
Granger method, this one operates in multidimensional state
spaces.

To find the optimal choice of the reconstruction parameters,
rather than trust the false nearest-neighbor method without
reservation, we evaluated the prediction error for various com-
binations of possible embedding parameters. Consequently,
the lowest errors led us to the proper choices of d and τ .

Regarding the actual method of prediction, we used the
method of analogs [34] that finds historical data similar to the
current situation and that assumes that the system will continue
just as it did in the past. There are several ways to predict
the follower of point Y (t), the simplest one being finding the
time index i of its nearest neighbor from past states on the
reconstructed trajectory and declaring Ŷ (t + 1) = Y (i + 1).
A modification, which was used here, improves the simplest
version by averaging the followers of several neighbors while
considering exponential weighting based on the distances of
the neighbors from Y (t).

The specific steps of the method to detect the causality from
X to Y are as follows:

(i) The manifold MY is performed. This provides space to
get the predictions of Y without using additional information
from X. The one-point predictions Ŷ of a large-enough statis-
tical sample of N points over the reconstructed trajectory are
computed. The resulting errors are given by eY (t) = Y (t) −
Ŷ (t).

(ii) To get the predictions of Y using information
from both X and Y , we reconstruct the manifold MX+Y

(mixed-state space). MX+Y contains some of the coordinates
from MY and some from MX. If we used the full
number of coordinates, then the state corresponding to
time t would be {y(t),y(t − τY ), . . . ,y[t − (dY − 1)τY ],
w.x(t),w.x(t − τX), . . . ,w.x[t − (dX − 1)τX]}, where the
weight w represents the impact of system X. Analogously as
in step (i), the predictions of system Y , denoted as ŶX+Y (t)
in time t , are computed. The corresponding errors are
eX+Y (t) = Y (t) − ŶX+Y (t).

(iii) To decide whether the addition of information from
X improves the prediction of Y (X drives Y ), we use the
Welch test to test the null hypothesis H0 that the errors come
from independent random samples from normal distributions
with equal means and equal but unknown variances against
the alternative hypothesis that the mean of errors eX+Y is less
than the mean of eY . If H0 is rejected on a 5 % significance
level, then we accept that eX+Y < eY or, equivalently, that the
inclusion of the knowledge of X significantly improves the
prediction of Y .

Causality in the opposite direction, i.e., from Y to X, is
investigated analogously—after exchanging the roles of X and
Y in the above instructions.

IV. RESULTS

In the following, we demonstrate selected examples on how
each method mastered the causality detection. The percentages
of false-positive and -negative results are then presented in
Table I.

In case the reader is interested, more detailed results for all
methods and each individual test example can be found in the
Supplemental Material [35].

A. Granger’s test result

The Schwartz-Bayesian information criterion was used to
determine the model order p. The maximal number of time
lags of 15 was considered for all examples. The regression
coefficients were fitted by ordinary least squares, and the resid-
ual covariance matrix was obtained as the sample covariance
of the residual errors �̂ = ∑T

t=p+1 ε̂(t)ε̂(t)′/(T − p). Before
using Granger’s VAR analysis, we checked the VAR’s stability
and the autocorrelation of the error term. A VAR system is
stable if the eigenvalues of the companion matrix are less
than 1. Although the maximal eigenvalue was quite close
to unity for some examples, we assumed all fitted models
as stable. Since the autocorrelation of the error term has
influence on Granger’s VAR test, we tested by the multivariate
Ljung-Box portmanteau test (Q test) if the error term was not
serially correlated. In the case where the Q test rejects the
null hypothesis that the error term is not correlated with the
past values, it can be concluded that Granger’s VAR test is not
appropriate for analyzing causality and its result is not valid.
We report that only for the data of coupled AR models did the
Q test not reject the hypothesis that the residuals in fitted VAR
are a white-noise sequence (p value ≈ 0.42); for the rest of
the examples, the null hypothesis of the Q test was rejected
(p value < 10−15).

In the case of the AR processes, the Granger causality was
correctly detected in the direction Y → X (p value < 10−4)
for C = 0 and in both the directions Y → X (p value < 10−15)
and X → Y (p value < 10−15) for C = {0.2,0.4,0.6}.

Although without the support of the Q test, the correct
causal links were detected significantly for the bidirectional
two-species model and for few cases of week couplings
between the chaotic dynamical systems. For the rest of the
examples, causality was incorrectly detected as bidirectional
(p value < 10−10).

As expected, the application of Granger’s VAR test turned
out to be fast and accurate for the AR models but inappropriate
for most of the considered examples of coupled nonlinear
systems. Table I shows that the method too often detected
causality in cases where no causal relationship existed (high
false-positive rate).

B. Extended Granger’s test results

The set of reference points in the reconstructed phase space
consisted of 200 randomly chosen points in the long data set
and 100 points in the short data sets. The time delay for all
examples was set to τ = 1. The embedding dimension was
d = 2 for the coupled AR models, unidirectionally coupled
Henón systems, and bidirectional two-species model; d = 3
for the unidirectionally coupled Rössler systems and the exam-
ple of a mediated causal link; and d = 5 for the fishery model.
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FIG. 5. Extended Granger causality index for unidirectionally
coupled autoregressive processes [Eqs. (1) for C = 0] for 20 000
points and decreasing δ. The index correctly suggests the causal link
in the direction Y → X. Zero index values in the opposite direction
mean that there was no link from X to Y .

A difficult issue in the EG method is how to determine
the optimal neighborhood size δ. The number of points in the
neighborhood should be large enough because of statistics, but
the size of the neighborhood must be small due to the usability
of the linearization. Chen et al. have not provided instructions
for identifying the optimal interval; they just suggest to seek
a compromise by examining the index as a function of δ [2].
Figures 5 and 6 show the estimated EGCI as a function of size
of neighborhood δ averaged over five experimental runs (the
error bars denote the standard deviation). The values of δ mean
percentages of the diameter of the reconstructed state portrait.

As expected, the size of δ was not critical when analyzing in-
terconnected autoregressive processes. The result for Eqs. (1),
C = 0, is shown in Fig. 5.
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FIG. 6. Extended Granger causality index for unidirectionally
coupled Rössler and Lorenz systems [Eqs. (3) for C = 2] for clean,
long time series and decreasing δ. In this example, X → Y . However,
the figure wrongly indicates causality in both directions for low δ.
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FIG. 7. Extended Granger causality index for unidirectionally
coupled Rössler and Lorenz systems [Eqs. (3)] for clean, long time
series, fixed δ, and increasing couplingsC. Bars at the bottom show the
results for the surrogates. The figure indicates bidirectional causality
even in cases where only X → Y is true.

However, in more complex situations, finding the relevant
δ neighborhoods and reading the resulting graph were prob-
lematic or even impossible.

An example can be seen in Fig. 6, which shows the causality
index for decreasing δ in coupled Rössler and Lorenz systems.
Surrogate testing (see Fig. 7), resulting in the detection of
bidirectional causality, confirmed the failure of the EG method
in the Rössler → Lorenz example.

We report that the results obtained by employing the
surrogate analysis to the EG method were invalid for most
of the nonlinear examples. In the neighborhoods selected
according to the above instructions, the use of VAR models
did not seem appropriate.

C. Kernel Granger’s test results

The Kernel Granger’s test was employed using both
inhomogeneous polynomial functions and Gaussian kernel
functions [4]. Both variants led mostly to the same conclusions
regarding causality, but the polynomial kernel version was
considerably faster than using the Gaussian kernel. In testing,
we used different combinations of parameters of the method.
The resulting images for all tested examples can be found in
the Supplemental Material [35].

The KG method detected causal links between AR models
without problems.

KG was also successsful with linked Hénon systems.
Figure 8 shows the estimated causality index δF for different
coupling values. The nonzero values of the index correctly
indicate causality in the X → Y direction, while δF remains
zero for unlinked direction and also after synchronization.

However, in more complex situations, the KG method
tends to give false-positive results. Take an example of the
unidirectionally coupled Rössler and Lorenz systems for
which the KG test (Fig. 9) incorrectly indicates bidirectional
causality.
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FIG. 8. Kernel Granger causality index δF for unidirectionally
coupled Hénon systems [Eqs. (2)] for increasing couplings C. In-
homogeneous polynomial kernel, m = 2, p = 2; 20 000 clean data
points used for computation. Results for surrogate data are so close
to zero that they cannot be seen. The picture indicates correctly the
X → Y link.

D. Conditional mutual information results

In the case of the VAR model, the CMI method led to
correct results for the 20 000-point long time series. Detection
was less successful when using only 1000 data points. In
cases of weak couplings, the values of the examined index
were indistinguishable from the values computed for the
surrogates; however, for strong couplings, the causal link was
still determined correctly.

Causal analysis of unidirectionally coupled Hénon systems
was also managed very well by the CMI method.

The test example of Rössler → Lorenz turned out to be
much more difficult for the CMI method. Figure 10 shows
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FIG. 9. Kernel Granger causality index δF for unidirectionally
coupled Rössler and Lorenz systems [Eqs. (3)] for increasing cou-
plings C. Inhomogeneous polynomial kernel, m = 3, p = 3; 20 000
clean data points used for computation. Bars at the bottom show the
results for the surrogates. The figure indicates bidirectional causality
even in cases where only X → Y is true.
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FIG. 10. CMI for unidirectionally coupled Rössler and Lorenz
systems [Eqs. (3)] for noisy, 1000-point long time series and increas-
ing coupling values C. Embedding dimension d = 3 and delay τ = 3
for the direction X → Y and τ = 6 for the opposite direction were
used for the reconstruction. Bars at the bottom show the results for
the surrogates. Although the correct answer was X → Y , except for
very weak couplings, the CMI method indicated causal links in both
directions.

the results for all investigated coupling values when using
short, noisy time series. In fact, when using long and clean
data, the resulting figures indicated the same thing. For weak
couplings, correctly, only the link X → Y was detected; for
strong couplings, however, the CMI method came to the wrong
conclusion that Y → X also.

Analysis of the Rössler 0.5 → Rössler 2.5 example was
slightly better than in the previous case. Figure 11 shows that,
for long time series and coupling values well below the thresh-
old of synchronization, the method correctly detected that X
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FIG. 11. CMI for unidirectionally coupled Rössler systems
[Eqs. (4)] for clean, long time series and increasing coupling values
C. Embedding dimension d = 3 and delay τ = 13 for the direction
X → Y and τ = 2 for the opposite direction were used for the
reconstruction. Bars at the bottom show the results for the surrogates.
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FIG. 12. CMI for unidirectionally coupled Rössler systems
[Eqs. (4)]. Same as in Fig. 11 but for the 1000-point long time series.

drives Y . However, with short time series, the detection was
no longer possible, as the surrogate analysis shows in Fig. 12.

In the two-species model, the bidirectional causal link was
clearly identified for both clean and noisy data. In the case of
this example, the CMI method was the only method that was
able to find the causal link even after the addition of noise.

In the fishery model of two correlated but uncoupled time
series, the surrogate analysis incorrectly indicated bidirectional
causality.

The mediated link from the last test example [Eqs. (7)] was
clearly detected by the CMI method when using 20 000 data
points. For the short time series, the detection was no longer
possible.

We used the straightforward application of the CMI
test with three-dimensional condition in the case of three-
dimensional systems. This setting requires the estimation of
five-dimensional probability distribution for which 1000 data
samples are insufficient especially for the binning estimator.
We have repeated the tests using the k-nearest-neighbor esti-
mator which is considered more effective by many authors.
Testing for the presence of causality, however, the k-NN algo-
rithm did not bring significant improvement (see Supplemental
Material [35]).

In some cases, deeper understanding of the analyzed data
can bring improvement. For instance, in the case of coupled
Rössler systems, the CMI method can be applied to the instan-
taneous phases, which effectively require just one-dimensional
condition in the CMI. Then, the sensitivity and specificity
are increased even when using the binning estimator, and a
series length of order 1000 would be sufficient for a successful
detection of causality. See Ref. [6] for details.

E. Cross-mappings results

In the case of linked AR processes, the results were
mixed. For zero coupling, the CCM method failed to detect
that Y drives X unidirectionally (see Fig. 13). For nonzero
couplings, the method led to a significant cross-map skill in
both directions, correctly indicating a bidirectional link.

Causal analysis of the second data sets, the unidirectionally
coupled Hénon systems, was not well managed by the CCM
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FIG. 13. Cross-map skill ρ for unidirectionally coupled autore-
gressive processes [Eqs. (1) for C = 0] for an increasing number of
used data points. Embedding dimension d = 2 and delay τ = 1 were
used for the reconstruction. The CCM method led to false-positive
results. Cross-map skill in the direction X → Y being higher than in
the opposite direction suggests a causal link from X to Y and a very
weak or no link from Y to X. In fact, in this case, the correct answer
would be that Y drives X.

method. The unidirectional links were in 88% falsely detected
as bidirectional.

The test example of Rössler → Lorenz has also proved
to be unmanageable for the CCM method. Figure 14 shows
the results for the 21 coupling values when 20 000 clean data
points were used for the analysis. The CCM method incorrectly
indicated bidirectional causality.

Since the authors in Ref. [13] pointed out that, with limited
or noisy data, causality should be demonstrated by estimation
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FIG. 14. Cross-map skill ρ for unidirectionally coupled Rössler
and Lorenz systems [Eqs. (3)] for increasing coupling values C;
20 000 clean data points used for computation. Embedding dimension
d = 8 and delay τ = 1 were used for the reconstruction. For each
coupling, the boxplots include the results for 50 surrogate time series.
In cases where the correct answer was X → Y , the CCM method
mostly indicated causal links in both directions.
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FIG. 15. Cross-map skill ρ for unidirectionally coupled Rössler
and Lorenz systems [Eqs. (3), C = 1] for an increasing number of
used data. Although the correct answer was X → Y , the CCM method
wrongly indicated a bidirectional link.

precision increasing with the number of used data points, we
were also looking for this phenomenon. This is illustrated by
Fig. 15, which shows the cross-map skill under coupling C = 1
for an increasing number of used data points. However, this
figure incorrectly implies bidirectional causality. If we used
fewer than about 4000 data points, then the nonexistent link
in the direction Y → X would even appear to be stronger than
the X → Y link, which was the only one present here.

Analysis of the interconnected slower and faster Rössler
systems came in the same way as in the previous example.
The unidirectional links were in 82% falsely detected as
bidirectional.

Figures 16 and 17 illustrate how the use of different
measures affects the evaluation of the cross-map skill. We can
see that the use of the rank-based measure L suggested by the
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FIG. 16. Cross-map skill ρ for unidirectionally connected Rössler
systems [Eqs. (4)] for increasing coupling values C. Embedding
dimension d = 8 and delay τ = 1 were used for the reconstruction.
Each boxplot includes the results for 20 time series of 1000 clean data
points.
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FIG. 17. Cross-map skill ρ for unidirectionally connected Rössler
systems [Eqs. (4)] for increasing coupling values C. The only
difference compared to the previous figure is that here the measure L
[12] was used for the evaluation of the cross mapping, which obviously
led to more stable results.

authors in Ref. [12] led to more stable results than the measure
used in the CCM method [13].

In the two-species model, the bidirectional causal link was
clearly identified for the clean data. After the addition of
noise, on the other hand, detection of the causality was no
longer possible. The reason could be that the coupling used in
this example was relatively weak and that the noise made it
impossible to detect.

In the fishery model, the significant cross-correlation be-
tween species suggests that they might be coupled. On the
other hand, the cross-mapping skill did not improve for an
increasing number of data points in any of the two directions,
indicating that we might be not dealing with causality here.
Unfortunately, the surrogate analysis closed it as a bidirectional
causality, which belongs to false-positive results.

For the 20 000-point long, clean data, the mediated link in
Eqs. (7) was clearly detected by the CCM. For the short or
noisy data, it was no longer possible.

As regards the CCM method, Table I shows that it belonged
to the least successful. CCM produced false results even for
long clean time series. However, this failure is not entirely
against the theory, which claims that the direction of the causal
link implies good cross mapping but not that the direction
of no causality produces a poor mapping. As a result, the
criterion based on the improvement in the cross-map quality
with the number of observations can lead to false-positive
results, especially in the case of strongly coupled observables.
Like the authors in Ref. [33], we must warn against using this
method for real-world data.

F. Predictability improvement results

Investigation of the predictability improvement was done in
the reconstructed state spaces. In the case of long time series,
1000 predictions were made on the basis of the previous 19 000
data points. For the short time series, 200 points were predicted
on the basis of the previous 800 points.
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In the case of coupled AR models, the results were mixed.
For C = 0, the null hypothesis of no predictability improve-
ment was not rejected (p = 0.27) in the direction X → Y ,
which was right. For nonzero couplings, there was a causal
link in the direction X → Y . The examined predictabilities im-
proved nonsignificantly for the weakest coupling (p = 0.09)
but were highly significant for the two stronger couplings (p <

0.0008). However, there was a link in the opposite direction
of Y → X in all four cases, but it could not be confirmed
because the significance level was above the cut-off value
(0.12 < p < 0.18). For 20 short time series (1000 data points
each), the results were the same, only even less significant.

In the Hénon → Hénon example, for the 20 000-point
long time series, the causal links were identified correctly
with high significance. This was true for both clean and
noisy data and for any of the 21 coupling values. For the
1000-point long time series, the conclusions were the same.
Only in the case of the short noisy series was the predictability
improvement sometimes not significant for very small and very
large (around the synchronization threshold) coupling values.
However, neither here nor in the other examples did we ever
receive any false-positive results.

In the third example (Rössler → Lorenz), MX was recon-
structed with delay τ = 2 and embedding dimension d = 3,
whereas for MY the delay was 1 and the embedding dimension
was up to 9 (the stronger the coupling, the higher the optimal
embedding window τY .dY ). The conclusions were similar as in
the previous case. The predictions of y2 without considering x2

[Eqs. (3)] were clearly poorer than the predictions made with
the help of x2. For the long time series, the link X → Y was
detected with high statistical significance (p value < 10−15 for
the clean data and p value < 10−7 for the noisy data). When
we focused on the opposite direction, we found that adding
information from system Y did not improve the prediction of
the representative of X, confirming that Y does not drive X.
For the 1000-point long time series, the conclusions were the
same. Only in the case of the short noisy series (see Fig. 18)
was the predictability improvement sometimes not significant
for very small and very large coupling values.

In the fourth test example of a slower Rössler system X

driving a faster Rössler system Y [Eqs. (4)], the observable
from X helps to predict Y with high significance (p < 0.0001),
except for the two weakest coupling values and states after
the synchronization. Testing the opposite direction showed
no predictability improvement and rejected the causal link of
Y → X.

For the clean data of the two-species system, bidirectional
causality was detected with high statistical significance (p
value < 10−50 for the long time series and p value < 10−10 for
the short data). In the noisy data, the presence of bidirectional
causality could not be confirmed because the significance level
of the predictability improvement was above the cut-off value.

In the fishery model, no causal link was found between
the two time series. Regardless of whether we were testing
long, short, clean, or noisy data, we failed to reject the null
hypothesis, which was the correct outcome in this example.

The last example concerned a mediated link. The PI method
correctly failed to find any link in the Y → X direction.
However, the expected predictability improvement in the
direction X → Y was not confirmed either, being insignificant
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FIG. 18. Predictability improvement for unidirectionally coupled
Rössler and Lorenz systems [Eqs. (3)] for increasing coupling values
C. Each boxplot includes the results for 20 time series of 1000 noisy
data points (the figure for the clean data looks very similar). For most
values of C, the method revealed that X → Y .

(p = 0.11) for long clean data and at the limit of significance
(p = 0.048) for long noisy data. With the short time series, the
conclusion was the same.

We also touched on the impact of the noise level and the
number of data on the performance of individual methods,
although it was not systematically studied here. As regards the
impact of noise on the results, we tested only cases with 20-dB
additive noise. We found that this level of noise did not affect
considerably the performance of the methods.

As far as the data length is concerned, we used 20 000 or
1000 data points. It happened quite often that 20 000 points
allowed for the correct detection of causality, but 1000 points
were no longer enough.

The results for both long and short, as well as results
for clean and noisy data can be found in the Supplemental
Material [35].

Synchronized states would also deserve more attention.
Once the systems were synchronized, causality should not be
able to detect [6]. This was mostly true when we used the PI
method with long and clean data sets. On the other hand, noisy
and short data might behave somewhat differently, as shown
in Fig. 18, where the synchronized signals were able to help a
little with each other’s prediction. However, some methods
led to confusing results when analyzing synchronized time
series. For example, the cross-map skills evaluated in the CCM
method were close to the maximum in both directions when
analyzing synchronized signals. Then, it was impossible to
guess from the resulting images whether we were dealing with
synchronized systems, highly correlated systems, or strongly
bidirectionally interconnected systems. Another of the meth-
ods, the CMI method, as expected, did not see any causality
in the Hénon → Hénon example after the synchronization.
However, in some other test examples, the method incorrectly
indicated strong causal links between synchronized time series
(see Figs. 10, 11, and 12).

To compare the six methods to each other, the results
for clean, long versions of each individual test data were

042207-12



COMPARISON OF SIX METHODS FOR THE DETECTION … PHYSICAL REVIEW E 97, 042207 (2018)

TABLE I. Rates (in %) of false-negative and false-positive results
of the six methods (Granger, extended Granger, kernel Granger,
cross mapping, predictability improvement, and conditional mutual
information) for the seven test examples. Clean, 20 000-point-long
time series were used for the evaluation. The results of the detection
after the synchronization were not included. The false-negative rates
represent the cases when the method failed to find an existing causal
link. The false-positive rate is the proportion of all cases without
causal links, where the causal effect was incorrectly detected.

G EG KG CMI CCM PI

AR models False negative 0 0 0 0 0 71
False positive 0 0 0 0 100 0

Hénon → Hénon False negative 0 0 0 0 0 0
False positive 65 100 0 0 88 0

Rössler → Lorenz False negative 0 0 0 0 0 0
False positive 87 100 87 60 87 0

Rössler 0.5 False negative 0 0 0 0 0 22
→ Rössler 2.5 False positive 45 100 64 18 82 0

Two-species False negative 0 0 0 0 0 0

Fishery model False positive 100 0 100 100 100 0

Mediated link False negative 0 0 0 0 0 100
False positive 100 100 100 0 0 0

All together False negative 0 0 0 0 0 16
False positive 68 94 49 28 85 0

summarized in Table I. Because of the problems described
above, we decided to base the ratings in the table only on the
results obtained for the pre-synchronization states.

V. CONCLUSION

In this study, the performance of six methods for the
detection of causality was assessed. The methods included
the Granger VAR test, the extended Granger test, the kernel
Granger test, cross-mapping techniques, conditional mutual in-
formation, and assessment of the predictability improvement.
Comparisons were made on test examples of systems with
different types of interconnections.

Unfortunately, the results of different methods often con-
tradicted each other. Take the test data of Rössler → Lorenz,
for example. Although we had a causal link here in just
one direction, the Granger causality was detected highly
significantly in both directions. False causality from the Lorenz
system to the Rössler system was also detected by the EG, KG,
CMI, and CCM methods. PI was the only method that did not
produce the false-positive Lorenz → Rössler result here.

In the case of unidirectionally coupled AR processes
[Eqs. (1) for C = 0], for a change, the PI method did not
find any causality and the Granger tests and the CMI method
correctly detected that Y → X, whereas the CCM method
wrongly suggested the opposite link of X → Y .

The outputs of the methods were difficult to compare. The
G, PI, and CMI method were based on statistical hypothesis
testing and surrogate analysis, respectively, whereas the EG,
KG, and CCM methods were designed to rely only on a
visual assessment of the images. In order to compare the
sensitivity and specificity of all tested methods to each other,
we extended the later three methods in the sense that the
statistical significance of the results was evaluated by the
surrogate test technique.

This allowed us to compare the results for all methods
applied to each individual test data within Table I.

The table, among other things, shows that it is important to
choose the right method for a particular type of data. We found
that detecting causality in coupled autoregressive processes
was mastered quickly and flawlessly by the Granger test and
by the extended and kernel Granger tests. The CMI method was
also fairly successful, while the task was much more difficult
for the CCM and PI methods.

As expected, the Granger test failed to correctly detect
causality in more complex test cases. Surprisingly, the ex-
tended Granger test did not do better either. In 94% of
noncausal examples, the EG method falsely detected causality.
The kernel method seemed to be more promising, although
even this, too, often led to false-positive results.

In fact, low specificity was the problem of most methods,
as evidenced by numbers in the bottom row of Table I. The
only method without false-positive results was PI. On the other
hand, PI had some difficulties with detecting existing causal
links in AR processes and for very weak couplings.

To summarize, this study showed that blind application
of any causality test easily leads to incorrect conclusions.
Causality analysis of our example of coupled AR processes
was simple and correct with the Granger tests but was tedious
and mostly incorrect when using other approaches. On the
other hand, time series produced by more complex dynamical
systems need carefully designed information-theoretic or state
space-based methods such as CMI and PI.
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