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Abstract

Time series data is widely accessible in many life areas like economy, weather, stock price, retail sales, distributed system work-
loads. While many studies have focused on improving existing prediction techniques on accuracy aspect, less efforts is paid towards
simple but efficient forecasting models in order to keep the balance between computation cost and prediction accuracy. In this work,
we propose a novel time series prediction model, which aims to both model simplicity and accuracy. The core of the model is built
based on extreme learning machine. Due to the random determination process for input weights and hidden biases, extreme learning
machine requires a large number of hidden neurons to achieve good results and this increases the model complexity. To overcome
this drawback, we propose a new opposition-based tug of war optimization to select optimally input weights, and hidden biases
then apply to extreme learning machine. Two real public traffic monitoring datasets from Internet service providers were employed
to evaluate our design. The achieved outcomes demonstrate that our proposed solution works effectively with satisfied performance
in comparison with existing models for distributed system workload prediction.
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1. Introduction

Time series data is a sequence of related data points gathered over time. The goal of time series data prediction
process is to make a forecast of data points in the near future based on the historical data. This process is useful for
many commercial and industrial applications such as economy forecast, sale improvement, budgetary analysis, stock
trading, yield projections, process and quality control of systems, inventory studies, workload projections, census
analysis and many more. Because there are many methods, which are used to model and predict time series data, two
criteria that are often taken into consideration when applying a forecast technique, including accuracy and effective-
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ness [1, 23]. While the precision can be measured by many standard metrics according to each prediction method,
the effectiveness is difficult to quantify by parameters. For instance, in addition to the accuracy, simpleness, learning
speed, the computation cost are also important factors that affects the effectiveness of time series prediction models.

In this paper, we focus on developing a novel time series prediction technique, which can tackle the non-linear
models and achieve the same level or even better accuracy, stability, time, and interpretability as compared with other
modern methods. The prediction model thus can be used to many applications, especially in this work we use for fore-
casting workloads of distributed systems. In this direction, we contribute a new version for extreme learning machine
(ELM) using our proposed opposition-based tug of war optimization (OTWO) algorithm to select input weights, and
using MoorePenrose generalized inverse to calculate output weights. The new gained prediction technique is called
OTWO-ELM. The reasons for ELM choice is that this model has several advantages such as simple, interpretable,
fast learning, and can bring good quality forecast results. In our model, the improvement of OTWO mainly focuses on
decreasing the norm of output weights of ELM and constraining input weights and hidden biases within a reasonable
range to enhance the convergence performance of that neuron network. Hence, it improves the prediction accuracy
for our model. OTWO-ELM was experimented and evaluated with two real datasets covering the Internet traffic data
from European Union (EU) and United Kingdom (UK) cities provided by Internet service providers. We also com-
pared the obtained performance of OTWO-ELM with several other well-known prediction techniques. The gained
results showed that our proposals bring positive effectiveness in predicting workloads for distributed systems.

The structure of this paper is as follows. In Section 2, we classify and analyze existing studies to highlight our
contributions. Section 3 describes OTWO-ELM design. In Section 4, we present experiments and evaluations for the
proposed model to prove its effectiveness. Section 5 concludes and defines our future work directions.

2. Related Work

Artificial neural networks are an effective universal approximator widely used for machine learning regression
and classification [29]. However, artificial neural networks often use gradient-based learning algorithms like back-
propagation, which causes many drawbacks [2], for example, easily trapped in local minimum, time-consuming com-
putation due to improper learning steps. In addition, the performance of artificial neural networks often is not very
stable [32]. Meanwhile, deep neural networks have more hidden layers and bring good performance [17]. The most
well-known deep neural networks type for time series forecasting is recurrent neural network [7] as well as its variants
like long short term memory [14], and gated recurrent unit [3]. However, there are still two main concerns toward
deep neural network usage: 1) requirement of a larger amount of data to train [33] in order to gain more accuracy and
2) the computational cost due to the model complexity [26].

In order to overcome drawbacks and concerns, we consider ELM [10] in this work. It randomly chooses the
input weights and hidden biases, determines the output weights of single-layer feed-forward networks through the
simple generalized inverse operation of the output matrix of hidden layer. ELM not only learns much faster with
better generalization performance but also avoids many difficulties faced by gradient-based learning methods such
as stopping criteria, learning rate, learning epochs, and local minimum. The interpretable of ELM has been proved
in term of both universal approximation and classification capabilities in [8, 9]. However, ELM still tends to require
more hidden neurons than traditional gradient-based learning algorithms. This also leads to ill-condition problem
due to randomly selecting input weights and hidden biases. In [34], the authors proposed an ELM version using the
differential evolutionary algorithm to select input weights, and using MoorePenrose generalized inverse to analytically
determine output weights. These improvements can bring good performance and make a compact ELM network. In
this direction, several meta-heuristic algorithms have been proposed to combine with ELM such as particle swarm
optimization (PSO) [30], genetic algorithm (GA) [31] to improve ELM performance. However, PSO weaknesses are
pointed out [16, 25] as easily to be trapped in the local optima when solving complex multi-modal problems. For
GA, many studies such as [20, 24] identified its issues. Concretely, with the high epistatic targeting functions, the
technique performance degradation is often large. It is suitable to mention hyper-heuristic strategy for hybridization
of nature inspired algorithms like [6], which is designed to efficiently solve computational search problems.

Recently, a novel meta-heuristic called tug-of-war optimization (TWO) based on physics laws in the tug of war
game in competitions was proposed in [11]. The authors have proved their effectiveness in several aspect such as
solving the structural damage identification problems [13], applying to the optimal design of castellated beams [12].
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Even with high performance in solving some problems, like other meta-heuristic algorithms, the traditional TWO can
get stuck in local optimal point, and therefore the convergence becomes slow and time-consuming. These problems
occur because some solutions update their positions based on the best solution. However, the optimal solution might
be in the opposite direction to the current solution. Considering such drawbacks, we propose an improvement of TWO
by searching global solution in both directions (forward and opposite). This proposal thus is called opposition-based
tug of war optimization (OTWO for short). Based on our knowledge, there is no research to enhance TWO by using
opposition-based learning, and no study improves the ability of ELM by OTWO. Our main contributions include:

Proposing an improvement of tug of war optimization based on opposition-based learning called OTWO;

. Proposing an improvement of ELM which using opposition-based tug of war optimization to find good input
weights and hidden biases (called OTWO-ELM);

3. Experimenting and evaluating several models including well-known multilayer neural network (MLNN), tradi-

tional ELM, GA-ELM, PSO-ELM, TWO-ELM and OTWO-ELM for the system workload prediction problem

(in this study, Internet traffic is used as test datasets).

N =

3. Designing Opposition-based Tug of War Optimization Extreme Learning Machine
3.1. Tug of War Optimization

Tug of War Optimization (TWO) is a multi-agent meta-heuristic technique, which simulates each solution X; = x; ;
(Eqg. 1) as a team, which participates in a series of tug of war matches. The team’s weight is defined based on the
quality of that corresponding solutions (Eq. 1), and the amount of pulling force, which a team can deploy on the rope,
which is assumed to be proportional to its weight (Eq. 2). Naturally, a lighter weight team will be pulled towards
a stronger weight team. The principle helps form the converging operator based on Newtonian (mechanics) laws in
TWO algorithm (Eq. 2 to 4). The convergence operator will improve the quality of each solution based on maintaining
a reasonable balance between exploration/exploitation phase. The details of TWO is presented in [11].
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where x?j is the initial values of j”* variable of the i candidate solution; Xjmax> Xjmin are the maximum and minimum

values of j’h variable respectively; rand is random number from a uniform distribution in the interval [0, 1]; n is the
number of optimization variables; fit; is the fitness value of i solution; fityors fitves: are the worst and the best
fitness values of teams; (i, y are the static coefficient and kinematic coefficient of friction; Wy is the pulling force
is assumed equal to its static friction force; F' ;,ij is the pulling force between team; and team; (Newton’s third law);
F ’r‘ i is the resultant force of heavier team; on team; in k™ iteration; gf.‘j is the gravitational acceleration constant in
Newton’s second law; Xl{‘ s Xf are the position vector of solution i and j in k iteration; AXf‘j is the displacement of team;

after competing with team j;ak is to gradually decrease the random portion of the team’s movement; o* € [0.9,0.99];
B is a scaling factor which can be chosen from the interval (0, 1]. © is the element wise element multiplication; Xf*l
is the new position of team; after a complete round; GB; is the best solution so far; randn is a random number drawn
form a standard normal distribution.
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3.2. Opposition-based Tug of War Optimization

Opposition-based Learning (OBL) is used to improve the convergence of meta-heuristic methods to find the global
solution of the optimization problem [28]. In general, OBL indicates that for finding the unknown optimal solution,
searching both a random direction and its opposite simultaneously gives a higher chance to find the promising regions
and to enhance the algorithm performance [15]. In the way, our improvement for TWO covers two stages above.
Firstly, the OBL is employed in the initialization of teams to enhance the rate of convergence and avoid stuck in local
optima through searching solutions in the whole domain. Secondly, in the updating stage of the population solution,
the OBL is used to check if the update in the opposite direction is better than the current ones. These two stages are
explained in detail as follows.

Initialization Stage: In general, meta-heuristic algorithms usually begin with initializing a random population,
which is an important starting point. If the diversity of the initial population is poor or all solutions are in the local
optima region, the algorithms may be led to early convergence and converge at local optima. To ensure the appropriate
diverse for the population, we propose the following schema: 1) Randomizing teams (population) S of size N/2 based
on Eq. 1. 2) Generating opposite teams S using OBL to create the opposite solution in S using Eq. 6. 3) With two
populations S and S, we have N randomly solutions.

Update Stage: In this stage, once the teams of a league compete against each other for a complete round, the
league should be updated. This is done by comparing the new candidate solutions (the new positions of the teams) to
the current teams of the league. If the new candidate solution i is better than the old one in terms of fitness value, the
old one is replaced by the new solution. If not, we generate the opposite solution of the old solution using Eq. 7, then
comparing the fitness between the old solution and the opposite of the old solution. After this stage, which solution
has better fitness value will be kept.

}ij = u_/+lj—xi_i, i= 1,2,..,N and j: 1,2,...,11 (6)
},‘_/ =Uuj + l/' — GB,'_]' + rand(GB,_i - Xl'_/') (7)

where x;; is the i point of the j* solution of S; X;; is the opposite solution of the x;; solution of S’; u; and /; are the

upper and lower bound of the j variable, respectively; GB; ; 1s the global best of the current iteration.

The final development of OTWO is illustrated in the Algorithm 1.

3.3. Opposition-based Tug of War Optimization Extreme Learning Machine (OTWO-ELM)

Our proposed prediction model includes two main algorithms, which are ELM and OTWO as presented in Fig. 1.
As mentioned in related work section, ELM was proposed to overcome the drawbacks of gradient-based methods
in single-hidden layer feed-forward neural networks by implementing two phases. 1) Phase 1: calculating weights
between input and hidden layer by choosing randomly; 2) Phase 2: calculating weights between hidden and output
layer by simple generalized inverse operation of the hidden layer output matrix.

The strength of ELM is speed because it requires little time to learn the relation between input and output by random
process. However, this is a trade-off between the speed and generalization performance. Non-optimal input weights
may be randomly chosen, and this causes bad performance. In order to tackle the problem, in this paper, OTWO
is used to replace the random process in the Phase 1 (Fig. 1). There are two important operations in Fig. 1, which
are encoding and decoding. The encoding operation encodes weights and biases of the input and hidden layer into
a solution/team (real-value vector). Otherwise, the decoding operation decodes the solution into weights and biases
of input and hidden layer. In order to avoid long training time problem, a termination criterion with completing a
maximum epochs number (training cycles) or achieving error goal is designed. Operations of OTWO in OTWO-ELM
model are introduced in Algorithm 1.

4. Experiment and Evaluation

There are two aspects that we consider in our experiments to evaluate the proposals, namely prediction accuracy and
stability of models. In this way, tested prediction models consist of well-known multi-layer neuron network (MLNN),
traditional ELM, several variants of ELM cover GA-ELM, PSO-ELM, TWO-ELM, and our proposed OTWO-ELM.
The related materials and the implementation of our experiment can be found in [19, 18].
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Algorithm 1 Opposition-based Tug of War Optimization
Input: The population size p; , the maximum number of generations g,,q.
Output: The best team

1: Initialize population following the strategy “Initialization stage” in 3.2
2: Calculate the weights W of the teams based on Eq. 1 (part 2)
3: Find the global best GB solution
4: g1

5. while g < g, do
6 for each ream; do

7 for each ream; do

8 if W; <W; then

9: Move team; towards team; using Eq. 4 (part 2)
10: Find the total displacement of team; based on Eq. 4

11: Determine the final position of team; using Eq. 5 (part 1)

12: Amend solution when its outside of the search space using Eq. 5
13: for each ream; do

14: if team™" has better fitness than team?™ then

15: Replace team?"’ by team*"

16: else

17: Find the opposite position of team? based on Eq. 7

18: Keep team:.’ld or replace by the opposite one based on fitness
19: Update team weights

20: Find the current best solution

21: Keep the global best or replace by the current best solution based on fitness

22: Return GB

bias weights
am[. . .I%q oy 1| .. .lalqlapll .. .Iaqu

|

Team / Initialize Opposition-based Tug of < optimization
Solution Population War Optimization termination criteri
Encodch
Input Hidéen Output Training Data
> Calculate output Best Team
o weights by
| Moore-Penrose
Y inverse matrices Decoder
Yip i,
A,
E‘ .
= Input weights
= > Yow-1
Trained Model

Single-Hidden Layer Feedforward Neural Network Structure

Fig. 1: OTWO-ELM training process

Datasets: In this work, we used two datasets [5]. The Internet traffic (in Megabyte) from data center in European
(EU) cities and Internet traffic (in Bytes) from United Kingdom (UK) academic network backbone. Both datasets were
collected at five-minute intervals. Both datasets are preprocessed into the form of time-series through normalization
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Fig. 2: Visualize the results of OWTO-ELM forecasting for EU (left) and UK (right) dataset

and transformation [22] before being used. In our tested models, we use Root Mean Square Error (RMSE) to
evaluate the error between output of traditional network and true value, and the fitness function in meta-heuristic
algorithms. For more objective, we also compare the gained results using Mean Absolute Percentage Error (MAPE)
and Coefficient of Determination (R?).

Setting Parameters: The train:test ratio is set to 0.8:0.2 for all datasets

1. Default model settings: The number of layers of MLNN, ELM and versions of ELMs are set to three layers (1
input, 1 hidden and 1 output); The input size p = km, where k is the sliding window size; m is dataset metric
number (univariate m = 1, multivariate m > 1); The size of the hidden layer is set to 20 neurons for all models.
This setting is chosen small enough to avoid over-fitting and big enough to well-learning the mapping function
from inputs to outputs. The output size w is 1. Activation function is set to Exponential Linear Unit (ELU) [4].

2. Meta-heuristics algorithms: For all meta-heuristics algorithms (GA, PSO, TWO, OTWO), we set the population
at 20 and the number of generation is 100; GA setting is based on the work [21] with crossover ratio p. is 0.95
and mutation ratio p,, is 0.025; PSO seting is based on [27]: inertia factor w is set as linearly reducing with
iteration from 0.9 to 0.4, cognitive learning rate c1 = ¢2 = 1.2; TWO and OTWO have similar parameters, which
are set based on the original paper [? ] for Eq. 4: @ = 0.99, scaling factor 8 = 0.1, and Ar = 1.

3. The sliding window size is set to 2 and 5. The size is 2 that means two data points at time step (¢t — 2) and (t — 1),
i.e., (x;—2, x;—1) are used to predict data point at time step ¢. The sliding window at 5 is set in a similar way.

4.1. Prediction Accuracy

Table 1 (left side) shows obtained results when running models with EU and UK datasets with different measure-
ment methods. Meantime, Fig. 2 illustrates the prediction outcomes against the real values of testing models.

With EU dataset. When sliding window k = 2, our proposed model achieves the two best results as compared
with others with RMSE and R? measurements. The two best results are 15.363 and 0.9958 for RMSE and R2, re-
spectively. For MAPE, OTWO-ELM achieves the second-best result that is only after TWO-ELM. When k = 5,
OTWO-ELM gives the best results in MAPE and R*> metrics with values of 2.853 and 0.9959, respectively. With
RMSE, OTWO-ELM gives the second-best result after PSO-ELM.Hence, it can be made an observation as follows:
with all measurement metrics, the obtained results when running MLNN are bad. ELM is slightly better than MLNN.
Thus, the values of that metrics are significantly better for combination models among meta-heuristic algorithms and
ELM. The outcomes from traditional TWO are quite similar when compared with GA and PSO techniques. However,
when combining Opposition-based learning into TWO, the novel OTWO bring the best results as compared with the
others in most experiments.

With UK dataset. For OTWO-ELM model, the obtained results show even higher performance in comparison
with EU dataset tests. While k = 2, OTWO-ELM makes the best results for all metrics including RMSE, MAPE, and
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Table 1: Prediction accuracy and the stability between our proposed OTWO-ELM and other models on different datasets

Prediction Accuracy Stability (based on MAPE)
Data Model k=2 k=5 Statistics (15 runtimes)
RMSE MAPE R? RMSE MAPE R? min max — mean std cv
MLNN 16.716 3.0125 0.9915 | 15.857 29826 0.9927 | 2.869 3.157 2965 0.108 0.036
ELM 16292 2.9834 0.9948 | 15.744 29255 0.9951 | 2.882 3.189 2919 0.077 0.027
GA-ELM 15.378 2.9203 0.9956 | 14914 2.8591 0.9958 | 2.836 3.054 2.882 0.064 0.022

EU PSO-ELM 15394 29255 0.9955 | 14.834 2.8856 0.9959 | 2.837 2935 2.863 0.029 0.010
TWO-ELM | 15400 29171 0.9955 | 14.885 2.8645 0.9958 | 2.843 2.883 2.859 0.011 0.004
OTWO-ELM | 15363 29249 0.9958 | 14.874 2.853 0.9959 | 2.834 2.873 2.854 0.011 0.004
MLNN 11.183 1.5687 0.9958 | 11.925 1.5945 0.9966 | 1.395 1.737 1.487 0.108 0.073
ELM 10.511  1.449 10.190 | 0.9974 1.4119 09975 | 1.395 1.652 1.460 0.069 0.047

UK GA-ELM 10.716  1.4157 0.9975 | 10.364 1.3399 0.9977 | 1.330 1.398 1.353 0.025 0.01

PSO-ELM 10.696 14126 0.9975 | 10.112 1.3701 0.9976 | 1.327 1.402 1347 0.026 0.019
TWO-ELM | 10.714 1.4170 0.9975 | 10410 1.3781 0.9976 | 1.329 1385 1.340 0.017 0.013
OTWO-ELM | 10.349 1.3677 0.9976 | 10.115 1.3383 0.9977 | 1.324 1.361 1.337 0.009 0.007

R2. Otherwise, when k = 5, OTWO-ELM brings the best results with MAPE, R? measurements, and gives the second-
best result just after PSO-ELM with RMSE. Note that the difference between RMSE’s best result and our proposed
OTWO-ELM is very small but there is a huge difference as compared with others. There is also an observation here:
the experimental results got with this data is like to EU data. Hybrid models of TWO-ELM, GA-ELM, PSO-ELM
produce quite similar results. However, the proposed model OTWO-ELM has better outcomes as compared with other
models.

4.2. Stability

Table 1 shows Min, Max, Mean, Standard deviation (Stdev) and Coeflicient of Variation (CV) of MAPE values
after 15 runtimes with both test data. There are some remarks from the experiments. With UK dataset, the values of
Min and Max of OTWO-ELM are the smallest. It means that in the best of worst cases, the OTWO-ELM offers the best
results as compared to the others. The Mean values of OTWO-ELM are also the smallest value. The minimum Stdev
and CV values also indicate that OTWO-ELM model is the most stable. With EU dataset, it can be seen that OTWO-
ELM gives the best results in all 5 values Min, Max, Mean, Stdev. This again proves that our proposed OTWO-ELM
outperform in both performance and stability perspectives.

5. Conclusion and Future Work

In this paper, the novel prediction model (OTWO-ELM) for time series data is proposed and validated with experi-
ments. The main contributions of the work include 1) developing a novel version of tug of war optimization based on
opposition-based learning; 2) proposing a new prediction model for time series data using a novel variants of extreme
learning machine; 3) carrying out experiments and evaluations for OTWO-ELM with real datasets of Internet traffic.
The advantages of the proposed model is not only the simplicity, but also its good accuracy, stability, minimal com-
putation cost and interpretable as compared with others. In the future, the approach will be enhanced with more core
methods to train different neural network types.
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