Number of the records: 1
Comparison of six methods for the detection of causality in a bivariate time series
Title Comparison of six methods for the detection of causality in a bivariate time series Author Krakovská Anna 1963 SAVMER - Ústav merania SAV SCOPUS RID ORCID Co-authors Jakubík Jozef 1989 SAVMER - Ústav merania SAV SCOPUS RID Chvosteková Martina 1984 SAVMER - Ústav merania SAV SCOPUS RID ORCID Coufal D. Jajcay N. Paluš M. Source document Physical Review E. Vol. 97 (2018), art. no. 042207 Language eng - English Country US - United States of America Document kind rozpis článkov z periodík (rbx) Citations KYRTSOU, Catherine - KUGIUMTZIS, Dimitris - PAPANA, Angeliki. Further insights on the relationship between SP500, VIX and volume: a new asymmetric causality test(1). In EUROPEAN JOURNAL OF FINANCE. ISSN 1351-847X, 2019, vol. 25, no. 15, pp. 1402-1419. DIEGO, David - HAAGA, Kristian Agasoster - HANNISDAL, Bjarte. Transfer entropy computation using the Perron-Frobenius operator. In PHYSICAL REVIEW E. ISSN 2470-0045, 2019, vol. 99, no. 4. PUKENAS, Kazimieras. Inferring causality from highly noisy uni-directionally coupled chaotic oscillators with small frequency mismatch. In JOURNAL OF MEASUREMENTS IN ENGINEERING. ISSN 2335-2124, 2019, vol. 7, no. 2, pp. 67-73. CRACIUNESCU, Teddy - MURARI, Andrea - GELFUSA, Michela. Causality Detection Methods Applied to the Investigation of Malaria Epidemics. In ENTROPY, 2019, vol. 21, no. 8. VANNITSEM, Stephane - DALAIDEN, Quentin - GOOSSE, Hugues. Testing for Dynamical Dependence: Application to the Surface Mass Balance Over Antarctica. In GEOPHYSICAL RESEARCH LETTERS. ISSN 0094-8276, 2019, vol. 46, no. 21, pp. 12125-12135. JIA, Ziyu - LIN, Youfang - JIAO, Zehui - MA, Yan - WANG, Jing. Detecting Causality in Multivariate Time Series via Non-Uniform Embedding. In ENTROPY, 2019, vol. 21, no. 12. BO PIETER JOHANNES, Andree. Probability, Causality and Stochastic Formulations of Economic Theory. In SSRN, 2019, p. 3422430, http://dx.doi.org/10.2139/ssrn.3422430. ROSSI, R. - MURARI, A. - GAUDIO, P. On the Potential of Time Delay Neural Networks to Detect Indirect Coupling between Time Series. In ENTROPY, 2020, vol. 22, no. 5. LU, W. - DUAN, M. - WANG, G. Case studies on driving factor with different scales: a modified Lorenz system and 500-hPa geopotential height. In THEORETICAL AND APPLIED CLIMATOLOGY. ISSN 0177-798X, 2020, vol. 141, no. 1-2, p. 455-463. HUANG, Y. - FU, Z. - FRANZKE, C.L.E. Detecting causality from time series in a machine learning framework. In CHAOS. ISSN 1054-1500, 2020, vol. 30, no. 6. CRACIUNESCU, T. - MURARI, A. - LERCHE, E. - GELFUSA, M. Image-Based Methods to Investigate Synchronization between Time Series Relevant for Plasma Fusion Diagnostics. In ENTROPY, 2020, vol. 22, no. 7. PAPANA, A. Non-Uniform Embedding Scheme and Low-Dimensional Approximation Methods for Causality Detection. In ENTROPY, 2020, vol. 22, no. 7. PELUSO, E. - CRACIUNESCU, T. - MURARI, A. A Refinement of Recurrence Analysis to Determine the Time Delay of Causality in Presence of External Perturbations. In ENTROPY, 2020, vol. 22, no. 8. HUANG, Y.- FRANZKE, C.L.E. - YUAN, N. - FU, Z. Systematic identification of causal relations in high-dimensional chaotic systems: application to stratosphere-troposphere coupling. In CLIMATE DYNAMICS. ISSN 0930-7575, 2020, vol. 55, no. 9-10, p. 2469-2481. ZHANG, N. - WANG, G. Detecting the causal interaction between Siberian High and Winter Surface Air Temperature over Northeast Asia. In ATMOSPHERIC RESEARCH. ISSN 0169-8095, 2020, vol. 245. STEPANIANTS, G. - BRUNTON, B.W. - KUTZ, J.N. Inferring causal networks of dynamical systems through transient dynamics and perturbation. In PHYSICAL REVIEW E. ISSN 2470-0045, 2020, vol. 102, no. 4. LEHNERTZ, K. - BROEHL, T. - RINGS, T. The Human Organism as an Integrated Interaction Network: Recent Conceptual and Methodological Challenges. In FRONTIERS IN PHYSIOLOGY. ISSN 1664-042X, 2020, vol. 11. SMIRNOV, D.A. Transfer entropies within dynamical effects framework. In PHYSICAL REVIEW E. ISSN 2470-0045, 2020, vol. 102, no. 6. PUKENAS, K. An efficient algorithm for inferring functional connectivity between the drive and the noisy response chaotic oscillators with significant frequency mismatch. In PRAMANA JOURNAL OF PHYSICS. ISSN 03044289, 2020, vol. 94, no. 1. YUAN, Al.E. - SHOU, W. Data-driven causal analysis of observational time series: a synthesis. In bioRxiv, doi: https://doi.org/10.1101/2020.08.03.233692, 2020. ARMSTRONG, E. My cat Chester’s dynamical systems analysyyyyy7777777777777777y7is of the laser pointerand the red dot on the wall: correlation, causation, or SARS-Cov-2 hallucination? In arXiv:2103.17058 [physics.pop-ph], 2020. SINHA, A.K. - LOPARO, K.A.A computational model for complex systems analysis: Causality estimation. In PHYSICA D-NONLINEAR PHENOMENA. ISSN 0167-2789, 2021, vol. 423. Dostupné na: https://doi.org/10.1016/j.physd.2021.132915. LI, M. - ZHANG, R. - LIU, K. Machine Learning Incorporated With Causal Analysis for Short-Term Prediction of Sea Ice. In FRONTIERS IN MARINE SCIENCE, 2021, vol. 8. Dostupné na: https://doi.org/10.3389/fmars.2021.649378. SILINI, R. - MASOLLER, C. Fast and effective pseudo transfer entropy for bivariate data-driven causal inference. In SCIENTIFIC REPORTS. ISSN 2045-2322, 2021, vol. 11, no. 1. Dostupné na: https://doi.org/10.1038/s41598-021-87818-3. BARRAQUAND, F. - PICOCHE, C. - DETTO, M. - HARTIG, F. Inferring species interactions using Granger causality and convergent cross mapping. In THEORETICAL ECOLOGY. ISSN 1874-1738, 2021, vol. 14, no. 1, p. 87-105. Dostupné na: https://doi.org/10.1007/s12080-020-00482-7. ROSSI, R. - MURARI, A. - MARTELLUCCI, L. - GAUDIO, P. NetCausality: A time-delayed neural network tool for causality detection and analysis. In SOFTWAREX. ISSN 2352-7110, 2021, vol. 15. Dostupné na: https://doi.org/10.1016/j.softx.2021.100773. PAOLINI, G. - SARNARI, F. - MEUCCI, R. - EUZZOR, S. - GINOUX, J.-M. - CHILLEMI, S. - FRONZONI, L. - ARECCHI, F.T. - DI GARBO, A. A Fast Method for Detecting Interdependence between Time Series and Its Directionality. In INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS. ISSN 0218-1274, 2021, vol. 31, no. 16. Dostupné na: https://doi.org/10.1142/S0218127421502394. BERMPERIDIS, T. - RAI, R. - RYU, J. - ZANOTTO, D. - AGRAWAL, S.K. - LALWANI, A.K. - TORRES, E.B. Optimal time lags from causal prediction model help stratify and forecast nervous system pathology. In SCIENTIFIC REPORTS. ISSN 2045-2322, 2021, vol. 11, no. 1. Dostupné na: https://doi.org/10.1038/s41598-021-00156-2. COCINA, F. - VITALIS, A. - CAFLISCH, A. Unsupervised Methods for Detection of Neural States: Case Study of Hippocampal-Amygdala Interactions. In ENEURO, 2021, vol. 8, no. 6. Dostupné na: https://doi.org/10.1523/ENEURO.0484-20.2021. WANG, Y. - CHEN, W. A modified phase transfer entropy for cross-frequency directed coupling estimation in brain network. In 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC). ISSN 1557-170X, 2021, p. 27-30. Dostupné na: https://doi.org/10.1109/EMBC46164.2021.9629730. GEORGE, E. - CHAN, C.E. - DIMAND, G. - CHAKMAK, R.M. - FALCON, C. - ECKHARDT, D. - MARTIN, R. Decomposing Signals from Dynamical Systems Using Shadow Manifold Interpolation. In SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS. ISSN 1536-0040, 2021, vol. 20, no. 4, p. 2236-2260. Dostupné na: https://doi.org/10.1137/20M1350923. BOULMAIZ, F. - ALYAFI, A.A. - PLOIX, S. - REIGNIER, P. Optimizing Occupant Actions to Enhance His Comfort while Reducing Energy Demand in Buildings. In PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS 2021), 2021, vol. 2, p. 886-894. Dostupné na: https://doi.org/10.1109/IDAACS53288.2021.9660912. WANG, M.Z. - FU, Z.T. A new method of nonlinear causality detection: Reservoir computing Granger causality. In CHAOS SOLITONS & FRACTALS. ISSN 0960-0779, JAN 2022, vol. 154. Dostupné na: https://doi.org/10.1016/j.chaos.2021.111675. KIWATA, H. Relationship between Schreiber's transfer entropy and Liang-Kleeman information flow from the perspective of stochastic thermodynamics. In PHYSICAL REVIEW E. ISSN 2470-0045, APR 21 2022, vol. 105, no. 4. Dostupné na: https://doi.org/10.1103/PhysRevE.105.044130. DOCQUIER, D. - VANNITSEM, S. - RAGONE, F. - WYSER, K. - LIANG, X.S. Causal Links Between Arctic Sea Ice and Its Potential Drivers Based on the Rate of Information Transfer. In GEOPHYSICAL RESEARCH LETTERS. ISSN 0094-8276, MAY 16 2022, vol. 49, no. 9. Dostupné na: https://doi.org/10.1029/2021GL095892. BOULMAIZ, F. - REIGNIER, P. - PLOIX, S. An occupant-centered approach to improve both his comfort and the energy efficiency of the building. In KNOWLEDGE-BASED SYSTEMS. ISSN 0950-7051, AUG 5 2022, vol. 249. Dostupné na: https://doi.org/10.1016/j.knosys.2022.108970. SUN, S.C. - JIN, B. - WEI, Z. - GUO, W. Revealing the Excitation Causality between Climate and Political Violence via a Neural Forward-Intensity Poisson Process. In IJCAI INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE. ISSN 1045-0823, 2022, p. 5171-5177. Dostupné na: https://doi.org/10.24963/ijcai.2022/718. DATSERIS, G. – PARLITZ, U. Nonlinear Dynamics: A Concise Introduction Interlaced with Code. Springer, ISBN 978-3-030-91031-0, 2022. Dostupné na: https://doi.org/10.1007/978-3-030-91032-7. WULKOW, N. Measuring dependencies between variables of a dynamical system using fuzzy affiliations. In arXiv, 2022. Dostupné na: https://doi.org/10.48550/arXiv.2203.05993. MURARI, A. - ROSSI, R. - GELFUSA, M. Combining neural computation and genetic programming for observational causality detection and causal modelling. In ARTIFICIAL INTELLIGENCE REVIEW. ISSN 0269-2821, 2022. Dostupné na: https://doi.org/10.1007/s10462-022-10320-3. SILINI, R. - TIRABASSI, G. - BARREIRO, M. - FERRANTI, L. - MASOLLER, C. Assessing causal dependencies in climatic indices. In CLIMATE DYNAMICS. ISSN 0930-7575, 2022. Dostupné na: https://doi.org/10.1007/s00382-022-06562-0. ZUNINO, L. - SORIANO, M.C. Quantifying the diversity of multiple time series with an ordinal symbolic approach. In PHYSICAL REVIEW E. ISSN 2470-0045, DEC 6 2023, vol. 108, no. 6. Dostupné na: https://doi.org/10.1103/PhysRevE.108.065302. ROSENBLUM, M. - PIKOVSKY, A. Inferring connectivity of an oscillatory network via the phase dynamics reconstruction. In FRONTIERS IN NETWORK PHYSIOLOGY. NOV 23 2023, vol. 3. Dostupné na: https://doi.org/10.3389/fnetp.2023.1298228. GAO, B.B. - YANG, J.Y. - CHEN, Z.Y. - SUGIHARA, G. - LI, M.C. - STEIN, A. - KWAN, M.P. - WANG, J.F. Causal inference from cross-sectional earth system data with geographical convergent cross mapping. In NATURE COMMUNICATIONS. SEP 21 2023, vol. 14, no. 1. Dostupné na: https://doi.org/10.1038/s41467-023-41619-6. ZHANG, J.R. - CAO, J.D. - WU, T. - HUANG, W. - MA, T. - ZHOU, X.Y. A novel adaptive multi-scale Renyi transfer entropy based on kernel density estimation. In CHAOS SOLITONS & FRACTALS. ISSN 0960-0779, OCT 2023, vol. 175, 1. Dostupné na: https://doi.org/10.1016/j.chaos.2023.113972. BAHAMONDE, A.D. - MONTES, R.M. - CORNEJO, P. Usefulness and limitations of convergent cross sorting and continuity scaling methods for their application in simulated and real-world time series. In ROYAL SOCIETY OPEN SCIENCE. ISSN 2054-5703, JUL 12 2023, vol. 10, no. 7. Dostupné na: https://doi.org/10.1098/rsos.221590. YANG, L.F. - LIN, W. - LENG, S.Y. Conditional cross-map-based technique: From pairwise dynamical causality to causal network reconstruction. In CHAOS. ISSN 1054-1500, JUN 2023, vol. 33, no. 6. Dostupné na: https://doi.org/10.1063/5.0144310. HUANG, Y. - FU, Z.T. Estimating prediction horizon of reservoir computer on L63 system when observed variables are incomplete. In JOURNAL OF PHYSICS-COMPLEXITY. JUN 1 2023, vol. 4, no. 2. Dostupné na: https://doi.org/10.1088/2632-072X/acd21c. DOCQUIER, D. - VANNITSEM, S. - BELLUCCI, A. The rate of information transfer as a measure of ocean-atmosphere interactions. In EARTH SYSTEM DYNAMICS. ISSN 2190-4979, MAY 12 2023, vol. 14, no. 3, p. 577-591. Dostupné na: https://doi.org/10.5194/esd-14-577-2023. RUNGE, J. Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships. In NATURE COMMUNICATIONS. APR 6 2023, vol. 14, no. 1. Dostupné na: https://doi.org/10.1038/s41467-023-37546-1. ZHOU, Q.J. - LI, L. - CHAN, P.W. - CHENG, X.L. - YANG, H.L. - LAN, C.X. - SU, J.C. Vertical Coupling of Gusts in the Lower Boundary Layer During Super Typhoons and Squall Lines. In JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. ISSN 2169-897X, APR 27 2023, vol. 128, no. 8. Dostupné na: https://doi.org/10.1029/2022JD038058. PUKENAS, K. A Bispectrum based Algorithm for Inferring Directional Coupling in Uni-Directionally Connected Chaotic Oscillators with Significant Frequency Mismatch. In JOURNAL OF APPLIED NONLINEAR DYNAMICS. ISSN 2164-6457, MAR 2023, vol. 12, no. 1, p. 31-37. Dostupné na: https://doi.org/10.5890/JAND.2023.03.002. GUO, W.S. - SUN, S. - WILSON, A. Exploring Potential Causal Models for Climate-Society-Conflict Interaction. In PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON COMPLEXITY, FUTURE INFORMATION SYSTEMS AND RISK, COMPLEXIS 2023. ISSN 2184-5034, 2023, p. 69-76. Dostupné na: https://doi.org/10.5220/0011968400003485. BUTLER, K. - FENG, G.C. - DJURIC, P.M. On Causal Discovery With Convergent Cross Mapping. In IEEE TRANSACTIONS ON SIGNAL PROCESSING. ISSN 1053-587X, 2023, vol. 71, p. 2595-2607. Dostupné na: https://doi.org/10.1109/TSP.2023.3286529. PUKENAS, K. A RobustAlgorithm to Detect Causality from Highly Noisy Uni-DirectionallyWeakly Coupled Chaotic Oscillators. In DISCONTINUITY, NONLINEARITY, AND COMPLEXITY, 2023, vol. 12, no. 4, p. 715-722. ISSN 2164-6376. Dostupné na: https://doi.org/10.5890/DNC.2023.12.001. GONG, C. - YAO, D. - ZHANG, C. - LI, W. – BI, J. Causal Discovery from Temporal Data: An Overview and New Perspectives. In arXiv, 2023, https://doi.org/10.48550/arXiv.2303.10112. LOZANO-DURÁN, A. - ARRANZ, G. – LING, Y. Information-theoretic causality and applications to turbulence: energy cascade and inner/outer layer interactions. In arXiv, 2023, https://doi.org/10.48550/arXiv.2310.20544. O'SHAUGHNESSY, M. - DAVENPORT, M. – ROZELL, C. Distance preservation in state-space methods for detecting causal interactions in dynamical systems. In arXiv, 2023, https://doi.org/10.48550/arXiv.2308.06855. Category ADCA - Scientific papers in foreign journals registered in Current Contents Connect with IF (impacted) Category of document (from 2022) V3 - Vedecký výstup publikačnej činnosti z časopisu Type of document článok Year 2018 Registered in WOS Registered in SCOPUS Registered in CCC DOI 10.1103/PhysRevE.97.042207 article
File name Access Size Downloaded Type License Comparison of six methods for the detection of causality in a bivariate time series.pdf available 795.9 KB 2 Publisher's version rok CC IF IF Q (best) JCR Av Jour IF Perc SJR SJR Q (best) CiteScore A rok vydania rok metriky IF IF Q (best) SJR SJR Q (best) 2018 2017 2.284 Q1 0.979 Q1
Number of the records: 1