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Abstract
Questions: Long-term programs monitoring the impact of climate change on alpine 
vegetation necessarily involve changing observers. We aim at quantifying observer 
errors and ask if the signal of alpine vegetation transformation due to climate change 
exceeds pseudo-changes caused by observer errors.
Location: Two mountain regions in the Alps, Schrankogel and Hochschwab (both 
Austria), and one in the High Tatra Mountains (Slovakia).
Methods: Vascular plant species presence and cover were recorded on 10–12 1-m2 
plots by 13–14 observers per site. Observer errors were calculated as species turno-
ver, and deviations of species cover and the plot thermic vegetation indicator (which 
is correlated with temperature) from the mean over all observers. Observer errors in 
estimating species cover were split into a random and systematic part. The influence 
of plot and species characteristics on observer errors was investigated using (gener-
alized) linear mixed-effect models. Changes over time from three surveys in species 
turnover, cover and the thermic vegetation indicator were related to the amount of 
observer error using a bootstrap approach.
Results: Species cover was the most influential factor affecting observer errors in 
recording species lists and in species cover estimation. Plot attributes and observer 
identity had a weak but significant influence on errors in the thermic vegetation in-
dicator. Systematic errors in estimating species cover were ≤5%. Changes over time 
in estimating species cover, as well as in species turnover and the thermic vegetation 
indicator exceeded observer errors in all cases where the observation period was 
≥10 years.
Conclusions: The thermic vegetation indicator, which combines species composition 
and cover with species’ elevational distributions, provides a reliable estimate of warm-
ing-related vegetation changes. Our results underline the importance of long-term 
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1  | INTRODUC TION

The present era of the “Anthropocene” is characterised by direct and 
indirect impacts of global climate change, which will affect ecosys-
tems irrespective of their distance from human settlements, trans-
port routes and intensive agricultural and forestry areas (Garavito, 
Newton, Golicher, & Oldfield, 2015; Sala, Chapin, & Huber-Sannwald, 
2001). Climate change is expected to have a continued and growing 
influence on the composition of species in natural and semi-natural 
vegetation (van Vuuren, Sala, & Pereira, 2006). Model projections in 
mountain regions indicate accelerating upward shifts of species dis-
tributions driven by climate warming (Dullinger et al., 2012; Engler 
et al., 2011). Indeed, such shifts have already been observed in the 
European Alps (Rumpf et al., 2018) and on more than 300 mountain 
summits across Europe (Steinbauer et al., 2018). This might foster 
competitive pressure on small and light-demanding alpine plants, 
associated population declines, and species disappearance from in-
creasingly unsuitable habitats (Lamprecht, Semenchuk, Steinbauer, 
Winkler, & Pauli, 2018; Rumpf et al., 2018). To assess changes in al-
pine plant species composition, species inventories and long-term 
monitoring of permanent plots are essential. Given the global di-
mension of climate change impact, a large number of study sites is 
required, including sites in remote areas.

A well-established method of investigating temporal changes in 
species composition is the comparison of species inventories over 
time (Pauli et al., 2012). Changes in species composition, however, 
are affected not only by ecological factors but also by chance events. 
To avoid erroneous conclusions, it is vital to distinguish between 
ecological signals and noise resulting from stochastic ecological 
fluctuation or from observer errors (Legg & Nagy, 2006; Mason, 
Holdaway, Richardson, & Chao, 2018) such as overlooking or mis-
identifying a species.

By comparing different methods to record alpine vegetation, 
Vittoz and Guisan (2007) suggested that lists of species are insuf-
ficient for monitoring and recommended to incorporate cover esti-
mates as additional information. Estimating percent species cover is 
an intuitive and low-cost measure of estimating species abundance 
that does neither require the identification of individual numbers nor 
a destructive measurement of biomass, but is directly related to the 
latter (Elzinga, Salzer, & Willoughby, 1998). Point method cover esti-
mates such as point-line intercepts (Dickinson, Mark, & Lee, 1992) or 
pointing with a grid frame (Everson, Clarke, & Everson, 1990), yielded 
the best consensus among observers. While being fairly reliable in 

this sense, these methods tend to capture only a very limited number 
of species with a sufficiently high cover (Friedmann, Pauli, Gottfried, 
& Grabherr, 2011; Vittoz & Guisan, 2007). Visual cover estimation 
thus remains the most effective method to obtain a complete record 
of a plot (Friedmann et al., 2011). Yet it involves a certain degree of 
inaccuracy and the resulting chance variability may be larger than 
the actual change in the composition of a patch of vegetation. It is 
therefore crucial to determine the amount of uncertainty associated 
with the species recording process (Morrison, 2016).

Vittoz et al. (2010) showed at Swiss sites of the international 
GLORIA program (Global Observation Research Initiative in Alpine 
Environments; Pauli et al., 2015) that observer errors in species lists 
and coefficients of variation of cover estimates were smaller than 
in previously published reports. On the other hand, the authors 
concluded that changes in cover were only likely to exceed noise 
for abundant species (>10% cover) or if relative changes were larger 
than 50% (Vittoz et al., 2010). For long-term monitoring, where ob-
servers inevitably change with increasing duration of the monitor-
ing activity, it is also important to know whether involved observers 
tend to produce a noticeable amount of systematic errors, or mostly 
random errors (Gottfried et al., 2012). A systematic error occurs 
when a particular person notoriously over- or under-estimates the 
actual cover of species. Such an error would be constantly present 
for a particular person, but would vary in direction and size between 
observers. Random errors, on the other hand, fluctuate among sub-
sequent estimates of species cover, either of one and the same ob-
server or among different observers.

Finally, monitoring the impact of climate warming on alpine veg-
etation requires an indicator capable of showing whether the ob-
served changes are related to actual changes in thermal conditions. 
An indicator that combines both species presences and their respec-
tive cover with species’ elevational distributions is the thermic vege-
tation indicator (Gottfried et al., 2012). This biological indicator can 
be used as a surrogate for the thermal conditions at a plot, because 
it is correlated with in situ measured soil temperatures (Lamprecht 
et al., 2018).

The current study used vegetation records of different observers 
from the same 1 m × 1 m plots with species lists and visually esti-
mated percentage cover in three alpine study sites with contrast-
ing bedrock and different elevations and, thus, of different species 
composition, growth form distribution and ecological complexity. 
Further, the amount of variation among observers was compared 
with changes over time. A total of 28 observers who were familiar 

in the landscape diversity and biodiversity 
caused by natural and anthropogenic 
factors”.

Co-ordinating Editor: Sándor Bartha

monitoring and long observation periods, which enable us to account for short-term 
fluctuations and observer errors alike.

K E Y W O R D S

alpine plants, Alps, climate change effects, cover, GLORIA (Global Observation Research 
Initiative in Alpine Environments), High Tatras, long-term monitoring, observer error, species 
composition, species turnover, thermic vegetation indicator



16  |    
Journal of Vegetation Science

FUTSCHIK et al.

with the local flora but had different levels of experience partici-
pated in this study. The current study thus provides a representative 
estimate of the precision that can be expected in long-term monitor-
ing using precisely re-located plots.

Specifically, we ask the following questions: (a) Do species attri-
butes (species cover and growth form) and plot attributes (species 
richness and total vascular plant cover) have a larger influence on 
observer error than observer identity? (b) What is the magnitude of 
systematic compared to random observer errors in species cover es-
timation? (c) Are changes in species composition and cover over time 
larger than observer errors? Furthermore, we discuss the implica-
tions of observer errors on long-term monitoring.

2  | METHODS

2.1 | Study area

Observer error in recording the presence and cover of vascular plant 
species was assessed on three mountains where long-term monitor-
ing is conducted in the frame of the GLORIA programme: Schrankogel 
(in the following abbreviated as SCH; Tyrol, Austria, 47°02'25"  N, 
11°05'41″  E, elevation 3,000  m a.s.l.), Hochschwab (HSW; Styria, 
Austria, 47°37'16'' N, 15°08'56″ E, 2,150 m a.s.l.) and the High Tatra 
Mountains (CTA; Prešov Region, Slovakia, 49°11'25'' N, 20°11'53" E, 
2000 m a.s.l.). SCH and CTA consist of siliceous bedrock, whereas 
HSW is a calcareous mountain range. The vegetation on SCH is less 
dense than on HSW and CTA with a mean cover of vascular plants 
of 21.9%, 35.2% and 75.3%, respectively. While cushions are the 
dominant growth form on SCH both in terms of cover and species 
number, most species on HSW and CTA are rosette plants, and 
graminoids dominate in terms of cover (Appendix S1).

On HSW and in CTA, vascular plant species have been monitored 
in the uppermost 10  m of four summits arranged along an eleva-
tional gradient from the treeline upwards and additionally in four 
permanently marked 1-m2 plots in each cardinal direction embedded 
in the summit areas since 2001 (Gottfried et al., 2012; Pauli et al., 
2015). To avoid excessive disturbance in the summit area — which 
is being monitored as well — observer error plots were clustered in 
an easily accessible area with similar vegetation (Appendix S2d–f) 
and on the same bedrock but at a distance of several km from the 
monitoring summits (Appendix S2b, c). On SCH, the monitoring 
plots are arranged in transects (Lamprecht et al., 2018) and can be 
accessed without disturbing other monitoring plots. Therefore the 
observer error plots were chosen from the pool of monitoring plots 
(Appendix S2a). The observer error surveys were conducted in the 
same year (SCH) or one year before (HSW and CTA) a regular mon-
itoring re-survey.

2.2 | Taxon nomenclature

Taxon names follow Fischer, Adler, and Oswald (2008).

2.3 | Field methods

Vascular plant species were recorded by 28 observers in a total of 34 
1 m × 1 m plots, and their cover was visually estimated following the 
guidelines stated in Pauli et al. (2004, 2015). On SCH, each of 14 ob-
servers recorded ten plots in the year 2014. On HSW and CTA, each 
of 14 and 13 observers, respectively, recorded 12 plots in the year 
2007. Nine observers participated in two of the study regions and two 
observers in all three. Recording was “blind”, i.e., without information 
from the records of other observers or on previous records (if avail-
able). Sampling time was not restricted. Observers were familiar with 
the flora of the respective regions. Additionally, to smooth out differ-
ent levels of experience, observers were trained prior to recording, i.e., 
all species occurring in the area around the observer error plots were 
identified and their differential traits discussed in the team with par-
ticular regard for difficult taxa and similar species. Plots were marked 
at the four corners and photographed to ensure precise re-location.

2.4 | Data analysis

All statistical analyses were carried out using the software R (R Core 
Team, 2016).

2.4.1 | Presence of species

Species turnover is the difference in species composition between two 
species lists. Species turnover over time is defined as the difference 
between species lists compiled at two points in time, whereas pseudo-
turnover is the difference in two species lists compiled by different 
observers which is purely caused by observer errors. Both types of 
turnover were calculated following Nilsson and Nilsson (1985):

where S is the total number of species and X is the number of spe-
cies exclusively found in a given plot in survey A and B, respectively. 
For species turnover over time, A and B represent surveys at different 
times, and for pseudo-turnover surveys carried out by different ob-
servers. The turnover value can range from 0 (the two species lists are 
equal) to 1 (no overlap of the species lists).

2.4.2 | Species cover

The coefficient of variation (CV) was calculated as the standard de-
viation of cover estimates of all observers per species-quadrat com-
bination divided by the mean.

The cover estimation error was calculated as the difference of 
each estimated cover value of each observer to the ‘true’ value. As 
the true cover of a species is unknown, we assumed the mean cover 
value of all observers (i.e., the consensus estimate) to be its best 

T=
(

XA+XB

)

∕
(

SA+SB

)
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approximation. As the cover estimates range over several orders of 
magnitude (<0.001% – 100%), the error was calculated in percent for 
the entire dataset and for each region separately as follows:

where x is the cover estimate obtained by each observer and x is the 
consensus value.

2.4.3 | Thermic vegetation indicator

The thermic vegetation indicator (TVI) was calculated for each plot 
as an averaged composite score of the altitudinal ranks (a species’ 
distribution centre along the elevation gradient; 1  =  subnival–
nival, 2 = alpine–subnival, 3 = alpine, 4 = treeline–alpine, 5 = tree-
line, 6 = montane) weighted by the cover of each species following 
Gottfried et al. (2012): 

The difference between the TVI values obtained by each ob-
server and the mean TVI over all observers (i.e., the consensus value) 
was calculated for the entire dataset and for each region separately.

2.4.4 | Variables affecting observer errors

To assess the effect of species and plot attributes, and observer 
identity on observer errors in recording species presence, cover 
and the TVI, generalized linear mixed-effect models (GLMMs) or lin-
ear mixed-effect models (LMMs) were applied (details see below). 
Species attributes include growth form (annual, cushion, graminoid, 
rosette, other herbaceous, woody plants) and species cover (log-
transformed, base 10). Plot attributes were total vascular plant cover 
(mean over all observers) and plot species richness (i.e., the number 
of species found by the majority of observers). Models were calcu-
lated for the entire dataset as well as for each region separately.

Predictor variables were tested for collinearity using variance 
inflation factors (function corvif available from http://highs​tat.com/
index.php/mixed-effec​ts-models-and-exten​sions-in-ecolo​gywith-r; 
Zuur, Ieno, Walker, Saveliev, & Smith, 2009). The square root of the 
variance inflation factor of a variable states how much larger the stan-
dard error of the coefficient estimate is, compared to a model where 
that variable is uncorrelated with the other predictors. Variance infla-
tion factors were <2, except for species presence and cover on SCH 
(where the variance inflation factor for total vascular plant cover and 
plot species richness ranged between 2.01 and 2.16). In the latter 
cases, the concerned variables were not removed, but their effect 
may be more difficult to disentangle from that of other covariates.

In the (G)LMMs, the above listed variables were used as fixed 
effects, and observer as well as plot nested in region as random in-
tercept terms. The latter term reflects the hierarchical structure of 

the dataset and accounts for potential spatial dependencies. Note, 
however, that the variance of the random intercept region cannot 
be reliably estimated because region has only three levels (i.e., SCH, 
HSW and CTA). Parameters were estimated by the Laplace ap-
proximation using the function glmmTMB as implemented in the R 
package glmmTMB (Brooks et al., 2017). The relative impact of the 
fixed effects as well as the random effect “observer” was assessed 
by comparing the deviance of the full model with models where one 
variable was excluded at a time as follows: −2 * (log likelihood of re-
duced model − log likelihood of full model). The larger the deviance, 
the higher is the impact of the excluded variable on the explanatory 
power of the model. Significance of the deviance was tested with χ2 
tests using the function anova (R package stats).

To assess which variables affect observer errors in recording 
species presence, binomial GLMMs with a logit link were used. As 
it is unknown which species were actually present in a plot, we 
compared individual species presence records with three scenarios 
where a species was considered to be truly present if found by (a) 
the majority of observers, (b) all observers, and (c) at least one ob-
server. Thus, the binary response variable (in the following referred 
to as “detection error”) was set to one if (a) a species presence record 
deviated from the majority of observers; (b) an observer recorded a 
species in a plot that was not found by all other observers; and (c) 
an observer failed to record a species that was found by at least one 
observer in a given plot. Correct records were set to zero.

To assess which variables affect observer errors in estimating 
species cover as well as in the TVI, LMMs (family Gaussian, iden-
tity link) were applied. The response variable was transformed as 
follows:

where x is the cover estimate or TVI obtained by each observer and 
x is the consensus value (i.e., the mean over all observers). Values 
were power-transformed (value0.14) to obtain homogeneous variances 
(Appendix S3). For cover, only those species recorded by at least two 
observers were included. As TVI is a plot-based indicator, only total 
vascular plant cover and species richness were included as fixed ef-
fects in these models.

2.4.5 | Systematic versus random observer errors in 
species cover estimation

Two types of errors in cover estimation can be distinguished: ran-
dom errors, i.e. imprecisions one observer makes from one estimate 
to the next, and systematic observer errors, i.e. systematic over- or 
underestimation of the true cover value (Gottfried et al., 2012). As 
a measure of the relative magnitude of the systematic observer er-
rors vs. random errors, the variance of the random effect “observer” 
in the LMMs was divided by the residual variance. In order to in-
vestigate whether some observers’ estimates were systematically 
too large or too small, observer-specific systematic errors were 

Cover estimation error=
[(

x−x
)

∕ x
]

∗100

TVI=
(

∑

rank(speciesi)×cover(speciesi)
)

∕
∑

cover(speciesi)

abs[ log (x∕x)]0.14

http://highstat.com/index.php/mixed-effects-models-and-extensions-in-ecologywith-r
http://highstat.com/index.php/mixed-effects-models-and-extensions-in-ecologywith-r
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measured both in terms of the difference to the average (mean) and 
the median of all observers (i.e., the consensus).

2.4.6 | Comparison of observer errors with changes 
over time

For comparisons between observer errors and changes over time, 
data from historical surveys were used. On SCH, surveys from the 
year 1994 (Pauli, Gottfried, & Grabherr, 1999), 2004 (Pauli, Gottfried, 
Reiter, Klettner, & Grabherr, 2007) and 2014 (Lamprecht et al., 2018) 
were available for 355 plots. On HSW and CTA surveys from the 
years 2001, 2008 (Gottfried et al., 2012) and 2015 (M. Winkler et 
al. unpublished data) were available from 64 long-term monitoring 
plots on four summits in each region. Using non-metric multidimen-
sional scaling (NMDS; function metaMDS in R package vegan; R Core 
Team, R Foundation for Statistical Computing, Vienna, Austria), the 
similarity between the vegetation in the observer error plots and the 
vegetation present in the monitoring plots was assessed (Appendix 
S2d–f). The ellipse enclosing the observer error plots (function ordiel-
lipse with kind=”ehull”) did not overlap with the easternmost moni-
toring plots on SCH (21 plots, block D; Appendix S2d), the lowest 
summit on HSW (16 plots, Appendix S2e) and the highest summit 
on CTA (16 plots, Appendix S2f), which were therefore not used for 
comparisons between observer errors and changes over time. This 
resulted in 334 monitoring plots on SCH, and 48 on both HSW and 
CTA. Furthermore, the vegetation of four observer error plots on 
HSW deviated from all other plots and these were consequently ex-
cluded from this analysis as well (Appendix S2e). Since the historical 
surveys on HSW and CTA were conducted on plots different to those 
used for the observer error surveys and represented only a small 
subset of monitoring plots on SCH, we assume for all comparisons of 
observer errors with changes over time that (a) the historical and ob-
server error surveys had the same level of precision; (b) the precision 
in the observer error plots is representative for the whole region; 
and (c) observed changes over time are representative for the region.

A bootstrap approach was used to compare the magnitudes of 
changes over time in species lists, cover estimates and TVI with the 
amount of difference expected purely by observer errors: two ob-
servers were randomly drawn without replacement, independently 
for each observer error plot. Then the difference between their 
species lists (pseudo-turnover), their cover estimates and TVIs were 
calculated, and the respective means over all plots computed. For 
cover, this difference was calculated from the power-transformed 
cover estimates to ensure a closer fit to a normal distribution. The 
differences were subsequently squared because it is biologically 
meaningless whether the difference in cover estimates between 
two observers is positive or negative. To assess the divergence be-
tween observers across a whole region, the average of the squared 
differences was taken across all plots of a region. Since the above ex-
plained sample of the two paired observers was random, this process 
was repeated 1,000 times with independently drawn observer pairs. 
The 1,000 resulting average differences were plotted as histograms 

and graphically compared with the corresponding changes over time 
in species turnover, cover and TVI. Changes over time were calcu-
lated for 48 long-term monitoring plots on three summits each on 
HSW and CTA for the period 2001–2008 (for TVI cf. Gottfried et 
al., 2012), 2008–2015 and 2001–2015, and 334 plots on SCH for 
the periods 1994–2004, 2004–2014 and 1994–2014 (for TVI cf. 
Lamprecht et al., 2018), respectively. More formally, we computed 
also p-values for testing whether changes over time were larger than 
observer errors. As the outcomes generated by bootstrap were nor-
mally distributed, we computed our p-value as p = 1 × Ф((t × µ)/SD), 
with Ф denoting the cumulative distribution function of the standard 
normal distribution, t the mean change over time, and µ and SD the 
mean and standard deviation of the bootstrapped observer error 
values, respectively.

3  | RESULTS

3.1 | Presence of species

The total number of species found by at least one observer was 36 
on SCH, 95 on HSW, and 41 in CTA, respectively. Overall, 17% of the 
species on HSW and CTA, and 3% on SCH were recorded only once 

F I G U R E  1   Boxplots of pairwise pseudo-turnover (a) and 
observer errors in estimating species cover (b) and the plot 
thermic vegetation indicator TVI (c) in the three mountain regions 
Schrankogel (SCH), Hochschwab (HSW) and High Tatras (CTA). 
Observer errors in (b) and (c) are defined as differences with the 
values obtained by the majority of observers. Outliers beyond 
300% in (b) are not shown
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(i.e., by only one observer in a single plot). The proportion of spe-
cies records (presence of a given species in a given plot) registered 
by the majority of observers ranged from 60.4% on HSW to 82.5% 
on SCH. On the other hand, 8.7%, 21.5% and 11.8% of the species 
records were recorded by only one observer on SCH, HSW and CTA, 
respectively (Appendix S4).

Mean pseudo-turnover among pairs of observers was 0.053 
(SD  =  0.007) for SCH, 0.134 (SD  =  0.015) for HSW, and 0.071 
(SD = 0.017) for CTA. Variation in performance among observers was 
highest on HSW, and lowest at SCH (Figure 1a, Appendix S5).

3.2 | Species cover

CV of the overall data set was 60.6  ±  35.6% (mean  ±  SD); cal-
culated for each region separately CV was 58.6  ±  27.5% on SCH, 
65.3 ± 39.3% on HSW, and 54.5 ± 34.7% in CTA.

Figure 1b shows the boxplot of the cover estimation errors as dif-
ferences (in %) of the cover estimates from the consensus estimate 
separately for each region. Observer errors in cover estimation were 
similar among the three regions, with the 25%–75% quantile ranging 

from −33.0% to + 20.4% in SCH, −41.7% to + 24.7% on HSW, and 
−36.8% to 21.8% in CTA, respectively. The 25%–75% quantile (i.e., 
the box) of observer-specific errors in cover estimation (Appendix 
S6a) ranged between −59.1% and  +  90.5%, and the 2.5%–97.5% 
quantile between −95.0% and + 241.7%. The average relative devia-
tions from the consensus ranged between −25.8% and 58.0% for the 
different observers (Appendix S5). Statistically significant system-
atic errors (i.e., deviations of the median from zero) were obtained 
for twelve of the 28 observers, seven of whom produced estimates 
that were significantly too low. However, the amount of systematic 
error was moderate in general (±16.0% on average). Species-specific 
boxplots show idiosyncratic patterns of observer errors in cover 
estimation with the 25%–75% quantile of most species remaining 
within  ±  50%. Notable exceptions are Arenaria ciliata, Campanula 
pulla, Gentiana brachyphylla and Sedum atratum, all usually small indi-
viduals with a scattered distribution (Appendix S6b). Cover estima-
tion error patterns are remarkably similar among growth forms with 
the median close to zero and the 25%–75% quantile in the range of c. 
-40% and +25% with the exception of annuals and other herbaceous, 
both of which have a broader interquartile range and a median of 
−25.7% and −16.3%, respectively (Appendix S6c).

  Overall SCH HSW CTA

(a) Detection error

Growth form 74.9*** 12.6* 50.9*** 32.7***

Species cover 401.3*** 137.6*** 162.3*** 124.5***

Plot species richness 11.5*** 0.3n.s. 14.9*** 0.1n.s.

Vascular plant cover 1.9n.s. 0.4n.s. 1.7n.s. 4.3*

Observer 25.1*** −8.8n.s. 13.2*** 17.5***

(b) Cover estimation error

Growth form 18.4** 8.2n.s. 7.9n.s. 10.5**

Species cover 834.5*** 210.2*** 435.2*** 190.0***

Plot species richness 19.0*** <0.1n.s. 24.9*** <0.1n.s

Vascular plant cover 10.5** 1.8n.s. 1.9n.s. 8.7**

Observer 137.1*** 14.1*** 56.1*** 74.7***

(c) Thermic vegetation indicator error

Plot species richness 1.0n.s. 0.2n.s. 5.6* 0.7n.s.

Vascular plant cover 9.8** 1.1n.s. 0.5n.s. 1.1n.s.

Observer 8.3** 0.3n.s. 0.6n.s. 5.2*

Notes: Models are binomial generalized mixed-effect models (a) and linear mixed-effect models 
(b–c) of factors affecting errors of 28 observers recording the presence and cover of vascular plant 
species and the plot thermic vegetation indicator (TVI) on 34 plots in in the three mountain regions 
Schrankogel (SCH), Hochschwab (HSW), and High Tatras (CTA). (a) Detection errors in recording 
species presence; (b) observer errors in cover estimation, and (c) observer errors in TVI. Observer 
errors are defined as deviations from the majority of the observers. The deviance of models with 
one explanatory factor removed is calculated in relation to the full model as −2 * (log likelihood 
reduced model − log likelihood full model). The most important factor is given in bold. Asterisks 
indicate significance of deviance (Chi-square test). Observer is a random effect in the models. 
Fixed effects of models are shown in Appendix S7.
*p < 0.05; 
**p < 0.01; 
***p < 0.001. 

TA B L E  1   Importance of variables 
affecting observer errors based on model 
deviance
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3.3 | Thermic vegetation indicator

Observer errors in TVI ranged from −0.292 to 0.359. Errors were 
smallest on HSW with the 25%–75% quantile between −0.011 
and 0.008, followed by CTA with  ±  0.022, and SCH with 0.033 
and 0.028, respectively (Figure 1c). The difference between each 
observer's TVI ranged from −0.039 to +0.024 on SCH, −0.008 
to 0.015 on HSW and −0.036 to +0.045 in CTA, respectively 
(Appendix S5).

3.4 | Variables affecting observer errors

Detailed results of binomial GLMMs and LMMs for the overall data-
set and each region separately are shown in Appendix S7.

3.4.1 | Species presence

As the scenarios of what constitutes the “true” value (majority, all 
observers, at least one observer) delivered qualitatively almost 
identical results regarding the ranks of importance of the variables 
(Appendix S8), only the results for the majority scenario are shown 
in the main text. Model comparisons based on deviance showed 
that species cover had by far the greatest influence on detection 
error, followed by growth form in the overall dataset and each re-
gion (Table 1a). Observer ranked third in the overall dataset as well 
as on SCH and CTA, and fourth on HSW. Plot species richness was 
only significant in the overall dataset (rank 4) and on HSW (rank 
3), whereas total vascular plant cover was only significant in CTA 
(Table 1a).

The plant growth form annuals had the highest detection error, 
followed by graminoids. With regard to single study regions, the 
same pattern was found on HSW, whereas in CTA (where no annu-
als occurred), graminoids followed by rosettes had the highest error 
probabilities. On SCH rosettes followed by cushions led to the most 
frequent errors (Table 2). The detection error decreased with in-
creasing plant species cover in all regions (Figure 2a). Only on HSW, 
the detection error increased slightly with increasing species rich-
ness (Figure 2b), whereas in the other two regions there was no clear 
relationship. The effect of total vascular plant cover was region-spe-
cific with no obvious overall trend (Figure 2c).

3.4.2 | Species cover

Model comparisons based on deviance showed that species cover had 
by far the greatest influence on differences in cover estimates from 
the consensus, followed by the random effect “observer” both overall 
and in each separate region (Table 1b). Plot species richness was the 

TA B L E  2   Effect of plant growth form on observer error when 
recording the presence of vascular plant species on 34 plots in 
three mountain regions

Growth form

Detection error (%)

Overall SCH HSW CTA

Annual 14.3 1.4 21.4 –

Graminoid 9.8 4.6 14.5 9.4

Cushion 7.7 5.2 9.4 -

Rosette 8.8 6.6 10.9 5.9

Other herbaceous 5.5 4.0 6.2 –

Woody plant 4.8 – 5.8 3.0

Percent false records per growth form type overall, Mt Schrankogel 
(SCH), Hochschwab (HSW), and High Tatra Mountains (CTA). False 
records are defined as those deviating from the majority of observers.
The growth form with the highest detection error is given in bold. 

F I G U R E  2   Observer error probabilities in recording species presence depending on species and plot characteristics. Probability of 
detection error, in relation to (a) species cover, (b) plot species richness, and (c) total vascular plant cover in three mountain regions (SCH: 
Schrankogel; HSW: Hochschwab; CTA: High Tatras). Lines represent generalized linear model fit (function geom_smooth with method 
glm, family = binomial from R-library ggplot2; Wickham, 2016) and 95% confidence bands for the true regression curve. In (a), the x-axis is 
logarithmic. Due to the small number of points and large residual variance, the confidence bands are often wide. The effects of species and 
plot characteristics on observer errors were tested with generalized linear mixed-effect models (Appendix S7) [Colour figure can be viewed 
at wileyonlinelibrary.com]
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third most important factor overall and on HSW, and growth form 
on SCH and CTA. Systematic observer errors in cover estimation ac-
counted for 2.4% of the residual variance in LMMs in the overall data-
set, and 1.5% on SCH, 2.5% on HSW, and 5.0% in CTA, respectively.

3.4.3 | Thermic vegetation indicator

Observer errors in TVI were significantly influenced by vascular 
plant cover and observer in the overall dataset and by plot species 
richness on HSW and observer in CTA, whereas none of the fac-
tors was significant on SCH. However, deviance was <10 in all cases 
(Table 1c).

3.5 | Comparison of observer errors with changes 
over time

Species turnover over time was significantly larger than pseudo-turno-
ver in all periods (1994–2004, 2004–2014, 1994–2014) on SCH, in the 

periods 2008–2015 and 2001–2015 on HSW and only in 2001–2015 
on CTA (Figure 3a–c). Cover changes over time were clearly beyond 
estimation noise and statistically significant in all three regions regard-
less of the period (Figure 3d–f). Observer errors in the TVI were nor-
mally distributed around zero and, except for the period 2008–2015 
on HSW and 2001–2008 in CTA, all changes in the thermic vegeta-
tion indicator values over time were significantly larger than expected 
under a scenario involving observer errors only (Figure 3g–i).

4  | DISCUSSION

In the present inter-observer error study, we evaluated the relative 
effect of observer, plot and species characteristics on several types 
of common errors in long-term monitoring of vascular plant species 
composition: pseudo-turnover, errors in species cover estimation 
(Mason et al., 2018; Morrison, 2016) and in a community-weighted 
trait measure, the plot-based TVI.

Pseudo-turnover among pairs of observers was between 0.053 
and 0.134 and thus in the lower range of values found in grassland 

F I G U R E  3   Comparison of changes over time with observer errors in recording the presence and cover of vascular plant species and 
the thermic vegetation indicator in three mountain regions. Histograms of bootstrapped inter-observer errors (a, d, g) on Schrankogel 
(SCH), (b, e, h) on Hochschwab (HSW), and (c, f, i) in High Tatras Mountains (CTA) of (a–c) pseudo-turnover, (d–f) root mean squared errors 
in transformed cover estimates, and (g–i) absolute differences in thermic vegetation indicator between observer pairs. Asterisks indicate 
whether changes over time are statistically significantly larger than observer errors (p-value: *, <0.05; **, <0.01; ***, <0.001; n.s., ≥0.05). For 
further details, see section 2 Methods, in the main text [Colour figure can be viewed at wileyonlinelibrary.com]
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plots (0.09–0.2; reviewed in Morrison, 2016) and forest plots (0–
0.21; Allegrini, Canullo, & Campetella, 2009) of comparable size. A 
proportion between approximately one third to two thirds of the 
species per plot were recorded by all observers (Appendix S4), 
which is in the same range (39%–77%) obtained by Vittoz and Guisan 
(2007) and Vittoz et al. (2010) for 0.4-m2–4-m2 plots in similar veg-
etation types.

The observed ca. 60% overall CV of visual cover estimates was 
in the same range as reported in studies with similar vegetation, plot 
size and estimation method (Vittoz et al., 2010; Vittoz & Guisan, 
2007). CVs were considerably smaller in two studies of low-eleva-
tion grasslands (7%–15%; Klimeš, 2003; West, 1938 in Morrison, 
2016). However, the reason for lower CVs is probably methodolog-
ical differences: the study by West (1938) was based on estimation 
of total vegetation cover rather than individual species, and in the 
study by Klimeš (2003) all cover values below 1% were set to the 
arbitrary value 0.5%. Thus, species with low cover which may have 
very large CVs (Morrison, 2016) were effectively not included in the 
calculation of the CV. On the other hand, CV was almost three times 
higher in forests (~170%; Helm & Mead, 2004), where plots usually 
are much larger than in the present study and thus cover estimation 
may be less reliable.

Species attributes were the most influential factors affecting ob-
server errors in the compilation of species lists, with species cover 
being by far the most important factor (Table 1). This finding was 
robust regardless of the definition of the “true” species list (i.e., spe-
cies found by the majority of observers, by all observers or at least 
one observer; Appendix S8). As observed in previous studies (Burg, 
Rixen, Stöckli, & Wipf, 2015; Milberg, Bergstedt, Fridman, Odell, & 
Westerberg, 2008; Vittoz et al., 2010; Vittoz & Guisan, 2007), error 
probabilities decreased clearly with increasing cover (Figure 2). The 
effect of growth forms was mainly attributable to annuals, with the 
main cause being disagreement on species identity in one species 
pair on HSW (Euphrasia minima vs. E. salisburgensis); followed by 
graminoids which may be challenging to identify when not flower-
ing. The majority of species, however, has flowers or fruits in the 
midst of the short alpine growing season of temperate biomes, when 
vegetation recording is conducted. Annual species, contributing only 
marginally to the alpine species diversity, may show large inter-an-
nual fluctuations in cover (cf. Lamprecht et al., 2018) and, therefore, 
are of limited relevance for the detection of multi-year effects of 
climate change. Other factors such as the clusteredness of species’ 
fine-scale distribution patterns, the absence of features critical for 
species identification (such as flowers or fruits) in some individuals 
or small sizes of individuals are also expected to play a role for ob-
server errors, but could not be recorded in the present study.

Observer identity had a larger influence than plot attributes, 
such as species richness and total plant cover. Noteworthy, only 
about half of the observers participating in two or three regions 
showed similar deviations from the consensus in all regions (i.e. had 
a systematic error). Moreover, the overall level of precision was re-
gion-specific which could be explained only partly by plot attributes. 
Regional species diversity and species composition may have played 

a role, since HSW, the region with both the highest species richness 
and the highest absolute number of graminoid species also had the 
lowest level of precision across the observers. Length of ascent as 
suggested by Burg et al. (2015) appears to be an unlikely explanation 
for higher observer errors, since errors were smallest in the region 
with by far the longest ascent (SCH). Furthermore, weather condi-
tions on SCH are by far the harshest among the three regions due to 
its high elevation.

As with species lists, species cover had by far the largest effect 
on cover estimation errors, followed by observer identity. Again, 
errors increased with increasing species cover. In contrast to spe-
cies lists, effects of growth form and plot attributes were of minor 
importance (Table 1). Other studies showed that observer variation 
in cover estimates increased with increasing plot richness (Kercher, 
Frieswyk, & Zedler, 2003), increasing total plant cover in a plot 
(Klimeš, 2003), increasing cover (Johns, Brownstein, Blick, Erskine, & 
Fletcher, 2015), and variation in species morphology (Klimeš, 2003), 
but found no relationship with growth form (Johns et al., 2015).

4.1 | Implications for long-term monitoring

Long-term vegetation monitoring is inevitably linked with the em-
ployment of multiple changing observers and, therefore, with the as-
sociated inter-observer errors (Legg & Nagy, 2006). Ideally, observer 
error should be estimated at each monitoring cycle and at each ob-
servation site separately, considering the substantial regional varia-
tion in some types of observer errors we found here. However, this 
is resource- and time-consuming and especially at sites with a short 
vegetation period, such as in high-mountain environments, it may 
be too difficult to accommodate both the monitoring fieldwork and 
the observer error assessment. Furthermore, repeated plot observa-
tions by many observers may cause trampling damage (Vittoz et al., 
2010). Therefore, we conducted the observer error survey directly 
in the monitoring plots only if this could be done without disturbing 
the surrounding monitoring plots. On HSW and in CTA this was not 
possible because the 1-m2 plots are embedded in larger summit area 
sections which are also monitored in the framework of the GLORIA 
programme (Pauli et al., 2015). Strategies to deal with observer error 
in long-term monitoring programmes include the minimization of er-
rors, identification of systematic bias, the use of robust indicators of 
change, and finally, observation periods of sufficient length for the 
signal to exceed observer error noise.

4.1.1 | Error minimization

Species identification skills are the most crucial and central issue 
in long-term vegetation monitoring (Legg & Nagy, 2006), underlin-
ing the importance of training with a special focus on small, critical 
and difficult species and previous agreement on a regional species 
list (Klimeš, Dančák, Hájek, Jongepierová, & Kučera, 2001; Vittoz 
& Guisan, 2007). Graminoid species require particular attention, 
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because identification errors may occur even at larger species cover 
values if an observer is not sufficiently familiar with the identifica-
tion features of species within and even among genera. A couple 
of days, therefore, should be set aside in the field, prior to the ac-
tual vegetation recording, for knowledge transfer among all team 
members. This also concerns the visual estimation of species cover, 
requiring training and calibration which can be aided by the use of 
transparent templates showing different cover sizes (Pauli et al., 
2015). A detailed quality-assurance procedure was suggested by 
Allegrini et al. (2009). Less experienced observers may profit from 
experts when working in pairs, although a joint recording with two 
observers did not improve cover estimations in a study by Vittoz and 
Guisan (2007).

4.1.2 | Systematic bias

Over all regions, 97.6% of the errors in cover estimation could be 
attributed to random errors, and the remaining 2.4% to systematic 
observer bias. In studies distinguishing between systematic and 
random error, the systematic portion ranged between 0% and 33% 
(Archaux, Berges, & Chevalier, 2007; Gottfried et al., 2012; Milberg 
et al., 2008; reviewed in Morrison, 2016). Milberg et al. (2008) con-
sidered a systematic error contribution of <10% as acceptable, which 
is of particular relevance in long-term monitoring, where observers 
unavoidably change. Theoretically, it is possible to apply a correction 
factor to account for systematic over- or underestimation of cover. 
However, this appears to be impractical as for each observer–spe-
cies combination a separate correction factor would have to be 
applied (Sykes, Horrill, & Mountford, 1983). Random errors will par-
tially cancel out when species are observed several times in different 
plots by the same observer. However, they lead to lower statistical 
power (i.e., the probability of rejecting the null hypothesis when it is 
false) which should be accounted for in data analysis and the design 
of long-term monitoring projects (Legg & Nagy, 2006; Milberg et al., 
2008).

4.1.3 | Robust indicators of change

Neither species turnover nor overall cover changes permit directly 
inferring climate change effects on vegetation. To detect these, an 
indicator combining both species composition and cover, the TVI, 
has been applied to pan-European monitoring data (Gottfried et al., 
2012). Thermophilisation observed over time (Gottfried et al., 2012; 
Lamprecht et al., 2018) exceeded pseudo-changes in the TVI in all 
but two cases (2001–2008 in CTA, and 2008–2015 on HSW) where 
actual thermophilisation was close to zero. Another advantage for 
long-term monitoring efforts is that the effects of plot characteristics 
and observer identity on TVI estimation errors were generally rather 
weak (Table 1). Furthermore, pseudo-thermophilisation was centred 
around zero, whereas thermophilisation over time was always posi-
tive (Figure 3g–i). Thus, the TVI provides a reliable estimate of real 

vegetation changes, which proved to be correlated with changes in 
temperature (Gottfried et al., 2012). While this indicator might not 
be feasible in all regions of the world, another community-weighted 
plant functional trait, plant height, was found to respond to warming 
in the tundra biome  (Bjorkman et al.,2018). Plant height increased 
rapidly over 27  years of monitoring in nearly all of 117 observed 
tundra sites. However, although there was a detailed assessment of 
errors regarding trait values assigned to species, observer errors in 
species list compilation and abundance estimation were not consid-
ered in this study.

4.1.4 | Long observation periods

Long-term vegetation monitoring is set up to detect changes over 
time, for example due to climate change (Guisan & Theurillat, 2005). 
This requires assessing if observed changes exceed noise due to ob-
server errors (Mason et al., 2018; Scott & Hallam, 2003). Changes 
over time in all measures (species turnover, species cover, and TVI) 
were significantly larger than pseudo-changes for longer observa-
tion periods (≥10 years), whereas the signal of changes over seven-
year periods often did not exceed observer error noise (Figure 3). 
This underlines the importance of long-term monitoring and long 
observation periods, which enable us to account for short-term fluc-
tuations and observer errors alike.
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