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Causality, dynamical systems and the arrow of time
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Using several methods for detection of causality in time series, we show in a numerical study that
coupled chaotic dynamical systems violate the first principle of Granger causality that the cause pre-
cedes the effect. While such a violation can be observed in formal applications of time series analysis
methods, it cannot occur in nature, due to the relation between entropy production and temporal irre-
versibility. The obtained knowledge, however, can help to understand the type of causal relations
observed in experimental data, namely, it can help to distinguish linear transfer of time-delayed sig-
nals from nonlinear interactions. We illustrate these findings in causality detected in experimental
time series from the climate system and mammalian cardio-respiratory interactions. Published by

AIP Publishing. https://doi.org/10.1063/1.5019944

Any scientific discipline strives to explain causes of
observed phenomena. Studying phenomena evolving in
time and providing measurable quantities which can be
registered in consecutive instants of time and stored in
datasets called time series brings researchers a possibility
to apply modern mathematical methods which can detect
possible causal relations between different datasets. Meth-
ods based on the so-called Granger causality have been
applied in diverse scientific fields from economics and
finance, through Earth and climate sciences to research
trying to understand the human brain. Chaotic dynam-
ical systems are mathematical models reflecting very
complicated behaviour. Recently, cooperative phenomena
have been observed in coupled chaotic systems due to
their ability to synchronize. On the way to synchroniza-
tion, the question which system influences other systems
emerges. To answer this question, research works suc-
cessfully applied the Granger causality methods. In this
study, we demonstrate that chaotic dynamical systems do
not respect the principle of the effect following the cause.
We explain, however, that such principle violation cannot
occur in nature, only in mathematical models which, on
the other hand, can help us to understand the mechanisms
behind the experimentally observed causalities.

l. INTRODUCTION

The quest of causality, that is, the identification of
cause—effect relationships among events, variables, or pro-
cesses, is one of the fundamental challenges in natural and
social sciences. In modern science, penetrated by compu-
tational approaches, a quantitative definition of causality is
required. Probably, the first approach to describe causality in
measurable, mathematically expressible terms can be traced
to the 1950s work of the father of cybernetics, Wiener,! who
wrote: For two simultaneously measured signals, if we can
predict the first signal better by using the past information
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from the second one than by using the information without
it, then we call the second signal causal to the first one.
Later, this concept has been introduced into time series anal-
ysis by Granger, the 2003 Nobel prize winner in economy.
In his Nobel lecture,” he recalled the inspiration by Wiener’s
work and identified two components of the statement about
causality:

1. The cause occurs before the effect.
2. The cause contains information about the effect that is
unique, and is in no other variable.

According to Granger, a consequence of these statements
is that the causal variable can help to forecast the effect vari-
able after other data have been first used.> This restricted
sense of causality, referred to as Granger causality, GC there-
after, characterizes the extent to which a process X; is leading
another process, Y;, and builds upon the notion of incremen-
tal predictability. It is said that the process X, Granger causes
process Y, if future values of Y; can be better predicted using
the past values of X; and Y; rather than only past values of Y;.

Granger has mathematically formalized these ideas using
linear autoregressive (AR) models (see Sec. IT A). Due to pos-
sible nonlinear dependence in time series from real-world
processes, many authors have proposed various nonlinear
generalizations® of the GC principle. In the following, we
will particularly discuss the generalization of GC based on
probability functionals from information theory. The infor-
mation-theoretic functionals, in their general formulation,
are applicable to a broad range of nonlinear processes;
however, we will focus on time series generated by non-
linear, possibly chaotic dynamical systems. The observa-
tion that the chaotic dynamical systems generate infor-
mation had led to an interesting and fruitful symbiosis
of ergodic theory of dynamical systems and information
theory.*® Information theory has also been applied in the
very intensive research field of the synchronization of chaotic
dynamical systems.”® We will remind information transfer
between, and adjustment of information rates of dynamical
systems on the route to synchronization.’ In the case of
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unidirectionally coupled dynamical systems, the distinction
between the driving and the driven systems has been targeted
by a number of data analytic methods'®'* which are usu-
ally also considered as methods for inference of causality. !
We will consider examples of these methods together with
the information-theoretic generalization of the GC principle.
We will focus on bivariate time series generated by pairs of
interacting dynamical systems; therefore, we will not discuss
the above Granger statement 2. In this respect, we recom-
mend readers become familiar with methods for inference of
causality in multivariate time series.'¢'

In this paper, we will focus on the above Granger state-
ment 1 and will study behaviour of causality detection meth-
ods under the time reversal, as well as discuss quantitative
characterization of time irreversibility of studied process.

Granger causality, as well as three methods for detect-
ing causality in nonlinear systems, is introduced in Sec. II.
The principle that the cause precedes the effect and its con-
sequence for the time reversal in a simple linear process is
studied in Sec. III. Time arrows and causality in nonlinear sys-
tems are analysed in Sec. IV. Time irreversibility is measured
in Sec. V. Results are summarized and real-world examples
presented in Sec. VI. A conclusion is given in Sec. VIL

Il. METHODS
A. Granger causality

The standard test of GC developed by Granger'® is based
on a linear regression model

L L
Yi=a,+ Z biYi—x + ZbZsz—k +&, 9]
pa =1

where &, are uncorrelated random variables with zero mean
and variance o2, L is the specified number of time lags,
and t =L+ 1,...,N. The null hypothesis that “X, does not
Granger cause Y;” is supported when by, = Ofork =1,...,L,
reducing Eq. (1) to

L
Yy=a,+ Y buY+é. )
k=1

B. Information-theoretic approach to Granger
causality

Let X be a discrete random variable that can acquire
values xy, ..., X,, each with corresponding probability p; =
p(x;), i = 1,...m. The average amount of information gained
from a measurement that specifies one particular value x; is
given by the entropy H(X):

HX)=—Ypilogp:. 3)
i=1

The joint entropy H(X, Y) of two discrete random variables X
and Y is defined analogously

my my

HX,Y) ==Y pl,y)logpx,y). (4

i=1 j=1

Chaos 28, 075307 (2018)

Here p(x;,y;) denotes the joint probability that X is in state x;
and Y in state y;.

The joint entropy may be expressed in terms of con-
ditional entropy HX |Y) as HX,Y)=HX | Y) + H(Y),
where

my my
HX | Y) ==Y "% pliy)logp(x: |y) (5

i=1 j=1

and p(x; | ;) denotes the conditional probability.
Mutual information 1(X,Y) between two random vari-
ables X and Y is then defined as

IX:Y)=HX)+HY) - HX,Y). (6)

The mutual information (MI) measures the strength of depen-
dence in the sense that (1) I(X,Y) =0 if and only if X
is independent of Y, (2) For bivariate normal distributions,
1(X,Y) = %10g[1 — p%(X,Y)], where p is the correlation
coefficient between X and Y.

The information-theoretic functional used for the infer-
ence of causality is called conditional mutual information
(CMI). The CMI between random variables X and Y given
Z is then defined as

IX,Y|Z)=HX |2)+HY |2)-HX.,Y |2). (7)

For Z independent of X and Y I(X,Y | Z) = I(X,Y) holds.

Another useful information-theoretic tool is the Kullback-
Leibler divergence (KLD). The KLD K(p, q) quantifies dif-
ference between two probability distributions p and ¢, and is
defined as

K(p.q) = pilog (‘qi) . ®)
i=1 !

This measure is not symmetric and therefore it is not a dis-
tance in the mathematical sense. The KLD is always nonneg-
ative and it is zero if and only if the distributions p and g are
identical. See Cover and Thomas? for details on information
theory.

In the above formulas, either natural logarithm or binary
logarithm may be considered and the above measures are then
given in nats or bits, respectively.

In practical applications, one deals with time series {x()}
and {y(r)} which can be considered as realizations of station-
ary, ergodic stochastic processes {X (f)} and {Y (#)}. Alterna-
tively, the time series {x(¢)} and {y(#)} can be understood as
one-dimensional projections of trajectories of dynamical sys-
tems X = fx(X,Y) and Y = fy(Y,X), where X and Y are
vectors of dimensions d; and d5, respectively.

Palug et al.’ studied synchronization of chaotic dynam-
ical systems using tools from information theory. The route
to synchronization is considered as a process of adjustment
of information rates and the information transferred from sys-
tem (process) {Y(¢)} to system (process) {X (#)} is measured
using the conditional mutual information /(Y; X; | X), where
X = X(t) and X; = X(t + 7). Analogously, the information
transferred from system {X} to system {Y} is measured by
I(X;Y; | Y). In the case of unidirectionally coupled systems,
Palu§ et al.’ interpreted the process of driving the slaved
system by the master system as a special case of causal
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influence in the sense of Granger causality. The conditional
mutual information was proposed as an information-theoretic
formulation and a nonlinear generalization of the Granger
causality.

Using the idea of Markov processes, Schreiber?! intro-
duced a functional of conditional probability distributions
called transfer entropy. Palus and Vejmelka?? show that the
transfer entropy is equivalent to CMI /(X;Y, | Y). Barnett
et al”® have shown analytically that the transfer entropy
(i.e., CMI I(X;Y; | Y)) is equivalent to Granger causality for
Gaussian processes.

If the measurement of information about the future X,
of the process {X}, shifted r time units forward (“cz-future”
thereafter), contained in the process {Y'} is used for testing the
existence of a causal link from {Y} to {X}, denotedas ¥ — X,
Palug and Vejmelka®> show that the vectors X and Y, can be
substituted by one-dimensional components x and y., and the
CMI in the time series representation reads as

Ky@);x(t + ©) | x(0), x(t —m), ... x[1 = (di — Dml}. 9)

The condition in CMI (9) must contain complete informa-
tion about the state of the system X. According to the Takens
theorem,?* the state of a d;-dimensional dynamical system (a
point in the state space) is mapped by the set of time-lagged
coordinates x(t),x(t — 1), ...x[t — (d; — 1)n;], where n; is
the backward time-lag used in the embedding of system X.
This time-lag can be set according to the embedding con-
struction recipe based on the first minimum of the mutual
information.?’
The causal link X — Y is tested in analogy with (9):

Kx(@);y(+ 1) | y@),y(t = m2), ...yt — (d2 — Dz} (10)

Wibral et al.?® introduced a slightly different formulation for
CMI:

Kx(:yt+ o) |yt +1 - 1),
yie+t—1—m),..y[t+7—1—(db—Dnpl}, (1)

in which the condition moves forward with increasing pre-
diction horizon 7, while in the usual formulation, used also
by Palu$ and Vejmelka,?” the condition is kept in the same
position for all values of 7.

C. Convergent cross mapping

Convergent cross mapping (CCM)" is based on Takens’
embedding theorem,’* exploiting the geometry of attractors
of coupled dynamical systems. While the CCM method con-
structs a map between mutual neighbourhoods in state spaces
of the coupled dynamical systems under study, there has
been a related research in which statistics of mutual nearest
neighbour points have been developed.'*'4

Let two dynamical systems X and Y be represented
by two time series {x()}-, and {y(1)}L,, respectively,
having finite length L € N. For the cross mapping from
X to Y, the attractor manifold My is constructed as a
set of E-dimensional vectors X(#) = {x(¢),x(t — n),x(t —
2n), ... x[t—(E—1D)nl}fort=1+(E—-1ntot=1L,1ie.,
My = {X(t)},L=1+(E71)n. E € N is the so-called embedding

Chaos 28, 075307 (2018)

dimension, see the supplement of Ref. 15. We find E + 1 near-
est neighbours of X(#) in My and denote their time indices
(from closest to farthest) by 71, . .., #g+1. These indices will be
used in the construction of the cross mapping (12) as follows.

We approximate y(¢),t =1+ (E — 1)n,...,Lby
E+1
) | My = wiy(e), (12)

i=1

where w; = u;/ Zf:ll uj, u; = exp{—d[X (), X(#)]/d[X(1),
X(t1)]}, and d(.,.) is the Euclidean distance. The cross map-
ping from Y to X is defined analogously.

The skill of the cross-map estimates is quantified
by the correlation coefficient (p) between the original
{y(t)}f:] +(E—1), and the approximated time series 3@ |
Mx}thlJr(Efl),7 (or between {)c(t)}thlJr(,:Ll),7 and {X(7) |
My}, +(E—1)y)- Considering geometry of systems’ attractors
and the embedding theorem, it is argued that if a causal link
from X to Y exists, then Y contains information about X and
the states of X can be faithfully reconstructed from the mutual
nearest neighbours on My and p(x,x) > 0. If the systems are
coupled undirectionally, i.e., only the link X — Y exists, then

p,%) > p(,).

D. Predictability improvement

Krakovskd and Hanzely?’ proposed a method which
also uses the Takens’ embedding theorem,”* however, is
a direct generalization of the GC principle for dynamical
systems. Again, two dynamical systems X and Y, rep-
resented by two time series {x(¢)} and {y(r)}, are con-
sidered. The manifold My of states of the system Y
consists of embedding vectors Y(¢) = {y(¢),y(t — n2),y(t —
2m2), ..., y[t — (d» — 1)n,2]}, where d, and 1, are the embed-
ding dimension and the time lag, respectively, for the system
Y. My provides the space for the predictions of Y without
using additional information from X. The one-point predic-
tions Y of a large-enough statistical sample of points over the
reconstructed trajectory are computed. The resulting errors
ey(t) are given by the difference between the actual and
predicted values of the time series as ||y(f) — y(?)|].

Regarding the used method of prediction, the method of
analogues?® is applied that finds historical data similar to the
current system state and assumes that the system will continue
just as it did in the past. There are several ways to predict
the follower of point Y (7), the simplest one being finding the
time index i of its nearest neighbour from past states on the
reconstructed trajectory and declaring f((t + 1))=Y+ 1).
A modification, which was used here, improves the sim-
plest version by averaging the followers of several neigh-
bours while considering exponential weighting based on the
distances of the neighbours from Y (7).

The prediction errors are evaluated for various combi-
nations of possible embedding parameters. Consequently, the
lowest errors led us to the proper choices of d, and n,. Anal-
ogously, we get the parameters d; and n; for the prediction
of X.

Following the GC principle, the predictions of Y
using information from both X and Y are obtained using
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the so-called mixed-state space’”>° manifold My,y. The
state-space points in Mx,y contain some of the coor-
dinates from My and some from My. If we used the
full number of coordinates, the state corresponding to
time ¢ would be {y(?),y(t — ),y —212),...,y[t — (ds —
Dnal), fwx(®), wx(® — ny), wx(® —2n1),...,wx[t—(d; — 1)
n11}, where the weight w represents the impact of system X.
The predictions of system Y in My .y, denoted as ?XJFY(Z) in
time ¢, are computed again using the method of analogues.?
The corresponding error ey y is given by ||y(t) — yxry (®)]|.
The latter is, however, chosen as an optimum when using
different values of w.

In order to decide whether the addition of information
from X improves the prediction of Y, the Welch test is used
to test the null hypothesis Hy that the errors come from inde-
pendent random samples from normal distributions with equal
means and equal but unknown variances against the alterna-
tive hypothesis that the mean of errors exy is less than that
of ey. If Hy is rejected on a 5 % significance level, then we
accept that exy < ey or, equivalently, that the inclusion of
the knowledge of X significantly improves the prediction of
Y,i.e., X causes Y (X — Y) in the Granger sense.

Causality in the opposite direction, i.e., ¥ — X, is inves-
tigated analogously—after exchanging the roles of X and Y in
the above instructions.

The introduced methods will be applied to the detection
of causality in idealized numerical experiments with suffi-
ciently long, noise-free time series. Therefore, and also for
the sake of simplicity, we will not present tests for statisti-
cal significance for these methods. In the idealized examples
below, the detected direction of causality will be clearly dis-
tinguishable by visual inspection and comparison of values
for the opposite directions. Details for significance testing for
the PI method are given by Krakovskd and Hanzely;?’ Palus®!
and Palu$ and Vejmelka®? describe statistical testing for CMI
using a surrogate data approach. Sugihara et al.'” introduced
the CCM method without statistical testing, however, in fur-
ther applications, e.g., by Tsonis et al.,’> also the surrogate
data approach is used for statistical testing of CCM results.

lll. THE CAUSE PRECEDES THE EFFECT

Consider probably the simplest demonstration of the
Granger causality principle—a bivariate, order one autore-
gressive model

x() = apx(t — 1) + §1(0),
y(@®) = byt — 1) +cix(t — 1) + &(1), (13)

where &), are independent, independently distributed normal
random deviates with zero mean and variance o given by
o = 0.40662, a; = 0.90693, b; = 0.40693, and c; = 0.5.

In this case, the time index ¢ attains natural numbers
1,2,.... The evolution of the process X depends only on
its own past, i.e., it develops independently of Y, while the
expression for y(f) contains x(zr — 1). Not surprisingly, the
standard GC test gives significant causality only in the direc-
tion X — Y. The mutual information /[x(¢); y(t + )] [solid
red line in Fig. 1(a)] and I[y(7); x(t + 7)] [dashed black line

Chaos 28, 075307 (2018)
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FIG. 1. Mutual information (a) and conditional mutual information (10) (c)
and (11) (e) between the present of process X and the t-future of process
Y (solid red line) and between the present of process Y and the t-future of
process X (dashed black line) for the AR process (13). Graphs (b), (d), and
(e) are the same as (a), (b), and (c), respectively, but for time-reversed time
series {x(¢)} and {y(?)}.

in Fig. 1(a)] are not able to indicate the direction of causal-
ity, since they both are nonzero for a range of forward time
lags t. The correct causality X — Y is indicated by CMI
I[x(); y(t + 7) | y(#)] [solid red line in Fig. 1(c)], or by CMI
ITx(®);y(t+ t) | y(t + 7 — 1)] [solid red line in Fig. 1(e)]
which are positive for a range of t’s, while the CMI for the
direction ¥ — X [dashed black lines in Figs. 1(c) and 1(e)] is
kept near the zero value.

In order to better understand the Granger’s proposition
1 “The cause occurs before the effect,” we repeat the above
analysis using the time series {x(¢#)} and {y(r)} reversed in
time. Having the original time series {x(i)}, i=1,...,N, its
time-reverse {x(j)} is defined as x(j) = x(i) forj =N — i+ 1.
While the MI I[x(?); y(t 4+ t)] and I[y(¢); x(¢ 4+ T)] of the time-
reversed time series are just swapped [Fig. 1(b)], the CMI
values were swapped and changed [Figs. 1(d) and 1(f)]. The
swap of the causality directions is obvious—the existence
of causality in the direction ¥ — X clearly emerged. It is
consistent with the Granger’s proposition 1: While going for-
ward in time, present values x(¢) influence the future values
y(t + 7). In reversed time series, the present value y(¢) con-
tains information about the future values x(¢ + 7). Besides the
clear effect of changing the order of the cause and the effect,
there are also minor changes in the CMI values. The CMI
for ¥ — X direction in the reversed time series [Figs. 1(d)
and 1(f)] has slightly smaller values than the CMI for X — Y
direction in the original time series [Figs. 1(c) and 1(e)]; and,
in the reversed time series also a causality in the X — Y direc-
tion occurs for T = 1. Although the later causality is much
“weaker,” comparing, e.g., the related CMI values, it has been
found significant in the standard GC test. This observation
is apparently the effect of time-averaged noise terms. The
reversed process X contains some information about its future
due to averaged terms &, and therefore also about the future
of Y. However, the “main” direction of causality, reflected in
large CMI values spread over a number of lags t, complies
with the Granger’s proposition 1: After reversing the order of
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the cause and the effect, the direction of causality changed
fromX - YtoY — X.

IV. CAUSALITY DETECTION METHODS AND THE
ARROW OF TIME

The predictability improvement (PI) method of Krakovska
and Hanzely?’ is a direct generalization of the GC principle
for nonlinear dynamical systems in the sense that it infers
the existence of causality in the direction X — Y by test-
ing the improvement of prediction of Y by using also the
knowledge of the present and past states of X. The condi-
tional mutual information (CMI) (10) or (11) is used to infer
the causal relation in the direction X — Y by measuring the
conditional dependence between the present and past states of
X and a future state of Y, i.e., the CMI evaluates the ability to
predict the future of Y using the present and past states
of X. Using the convergent cross-map (CCM) method, for
the inference of the same direction of causality, X — Y, Y
should cross-map X. At first sight, it seems contradictory;
however, note that CCM asks whether the present state of
Y contains information about the present state of X. Con-
sidering coupled dynamical systems, we can say that while
the methods, which generalize the standard Granger causal-
ity principle (PI and CMI here), evaluate the ability of the
driver (“master”) system to forecast the driven (“slave”) sys-
tem, the CCM method evaluates the ability of the slave to
nowcast the master. Thus the CCM lacks any arrow of time
in its formulation. (The time lags n are used for embedding
of scalar time series into d-dimensional state spaces.) What
it means for the Granger’s proposition 1? Since the CCM is
tailored for dynamical systems, let us have a look at the unidi-
rectionally coupled Rossler systems studied in detail by Palu§
and Vejmelka.?” The driving, master system X is defined as

x1(f) = —w1x0 (1) — x3(2),
X2() = wix1 (1) + 0.15x, (1),
x3(1) = 0.2 + x3(0)[x1 (1) — 10]
and the driven system Y as
Y1(0) = —wrya(t) — y3(0) + €[x1(t — 8) — y1 (D],
y2(8) = way1(2) + 0.15y2(2),
y3() = 0.2+ y3()y1 (1) — 10,

where w; = 1.015 and w, = 0.985. The first component of
Y contains the diffusive coupling term e[x;(t — &) — y;(#)],
where € is the coupling strength and § is a delay time in which
the driving information from X reaches the driven system Y.
We will start with § = 0, which is the standard setting in many
synchronization studies and can be considered as physically
relevant if the sampling time [the time between the measure-
ments x(#) and x(¢ + 1)] is greater than §. We integrate (see
Appendix for details) the above systems for a range of cou-
pling strengths €, record the components x; () and y; (), and
use them as an input into the CCM analysis. The results are
presented in Fig. 2(a). We can see that there is a range of €
for which the CCM skill for the direction X — Y is clearly
larger than for the opposite direction. We will explain the e-
dependence of causality measure shortly below. Now we just
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FIG. 2. (a) Cross-mapping skills for the X — Y direction (“Y cross-maps
X”—solid red line) and for the opposite direction (dashed black line) as
a function of coupling strength € for the unidirectionally coupled Rdossler
systems, § = 0. (b) The same as (a), but for time-reversed time series.

conclude that for a range of €, the CCM is able to distinguish
the correct causality direction X — Y. The results of the same
CCM analysis, but using the time-reversed time series, are
presented in Fig. 2(b). We can see that the result is practi-
cally the same, indicating the causality direction X — Y. This
should not be surprising considering the above discussion
about the lack of any time arrow in the CCM approach.

Palug and Vejmelka®? also studied the unidirectionally
coupled Rossler systems with § = 0. We refresh their results
in Figs. 3(a) and 3(b). Three-dimensional chaotic systems,
such as each of the above Rossler systems, are characterized
by three Lyapunov exponents**—one positive, one zero, and
one negative LE. The positive and zero LEs for both Rossler
systems are plotted as functions of the coupling strength €
in Fig. 3(a). For the driving system X, they remain con-
stant for all values of e, while for the driven system Y
they decrease (although nonmonotonously) with increasing
€. When the positive LE of the driven system [the solid red
line in Fig. 3(a)] becomes negative, the systems synchronize.
Since in the synchronized state trajectories of both systems are
topologically equivalent, it is impossible to detect the direc-
tion of coupling, see the discussion and references in Coufal
et al.** Thus for the systems able to synchronize, there is a
limited range of the coupling strength ¢ for which the direc-
tion of coupling can be reliably determined from time series.
We could observe this phenomenon in the case of CCM in
Fig. 2 as well as for the CMI analysis in Fig. 3(b).

Now let us repeat the CMI analysis for the time-reversed
time series. We can see in Fig. 3(c) that after the time rever-
sal, the CMI, just like the CCM, detects the same causality
direction X — Y.

The CMI (10) measures the ability to improve the pre-
diction of y(t + t) using x(¢) [or vice versa using CMI (9)].
The results in Figs. 3(b) and 3(c) present the mean CMI
for lags T =1,...,50 samples. The t-dependence of the
CMI for € = 0.07 (and 6 = 0) is presented in Fig. 4(a) for
T =1,...,530. Any dependence measure between x(#) and
y(t + t) [or x(¢t 4+ )] for chaotic systems vanishes for large
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FIG. 3. (a) Two largest Lyapunov exponents of the driver X (black and
blue constant lines) and the response system Y (decreasing curves, originally
positive LE is marked by a solid red line, originally zero LE by a dashed
green line). (b) Averaged conditional mutual information (10) for the X — Y
direction (solid red line) and for the opposite direction (dashed black line).
(c) The same as (b) but for time-reversed time series. All results for the
unidirectionally coupled Rossler systems with § = 0.

7; however, the oscillatory character of the Rdssler sys-
tem makes this decay very slow. The CMI r-dependence
reflects basic quasi-oscillatory period around 20 samples
(see Appendix for the sampling time) and a slower quasi-
periodicity. Figure 4(c) zooms the pattern from Fig. 4(a) for
T =1,...,50 and for the same range of values of the predic-
tion horizon t the results for the predictability improvement
method are given in Fig. 4(e). Although the r-dependence
for CMI and PI differs, both CMI and PI clearly detect the
causality in the X — Y directions. For Figs. 4(a), 4(c), and
4(e), their counterparts for the time-reversed time series are
Figs. 4(b), 4(d), and 4(f), respectively. Again, the time rever-
sal did not change the detected direction of causality in either
method.

One can think that the above result could be caused
by the instantaneous driving with § = 0. Let us integrate
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FIG. 4. [(a) and (c)] Conditional mutual information (10) and (e) predictabil-
ity improvement as functions of forward time lag t for the X — Y direction
(solid red line) and for the opposite direction (dashed black line). [(b), (d),
and (f)] The same as (a), (c), and (d), respectively, but for time-reversed time
series. All results for the unidirectionally coupled Rossler systems with § = 0
and € = 0.07.

Chaos 28, 075307 (2018)

>

o

E 0.015/_/—N\/\/ L~ ~——— — ~__
=

= o010

O

@ 0.005 (a) (b)
Y R v A Uyt
£ 03

P4

S 02

';: 0.1

g (c) (d)
O 00 e epene
z

: \/\/\/\/\/

o VAN
2

g 0.02

z° (e) )
[ T e e T et
o 0 10 20 30 40 50 O 10 20 30 40 50

TIME LAG t[SAMPLE] TIME LAG t[SAMPLE]

FIG. 5. (a) Predictability improvement, (c) conditional mutual information
(10), and (e) CMI (11) as functions of forward time lag t for the X — Y direc-
tion (solid red line) and for the opposite direction (dashed black line). [(b),
(d), and (f)] The same as (a), (c), and (d), respectively, but for time-reversed
time series. All results for the unidirectionally coupled Rossler systems with
§ =30and e = 0.07.

the unidirectionally coupled Rossler systems with a distinc-
tively nonzero coupling delay § = 30 samples. The results for
€ = 0.07 for the predictability improvement and the condi-
tional mutual information (10) and (11) are presented in Fig. 5.
Wibral et al.?® introduced the CMI (11) as a measure for infer-
ring the coupling delay. The discussion of this problem can be
found in Coufal et al.>* and will not be repeated here. We just
conclude that both CMI formulations give qualitatively the
same result: The causality direction X — Y does not change
after the time reversal. And the same result is obtained using
the PI method.

Figure 6 summarizes the results for the Rossler systems
with the time-delayed unidirectional coupling X — Y for the
studied range of coupling strength €. The CMI is again pre-
sented as the mean for lags t = 1,...,50, Pl used 7 =1
and CCM cross-maps the states of both systems at the same
time. For all the methods, even for the Rossler systems with
the time-delayed coupling, the direction of causality after
the time reversal remains the same as in the original time
series recoded in forward time evolution. This behaviour has
been confirmed also in other unidirectionally coupled chaotic
dynamical systems, e.g., identical and non-identical Henon
systems or the Rossler system driving the Lorenz system,
examples defined and studied by Palug and Vejmelka.?

The violation of the Granger causality principle 1 that the
cause precedes the effect, in the case of the coupled Rossler
systems, has also been observed using the information flow
and causality method of Liang®>-*® which is entirely indepen-
dent of the methods considered above. A number of methods
for inference of causality from experimental data, based on
the estimation of a predefined model, have been proposed,
for instance, dynamic causal modelling,’’ fitting of a phase-
dynamic model,*® dynamical Bayesian inference,*® or maxi-
mum likelihood methods.*° It is an interesting question how
would such methods evaluate causality in time-reversed time
series; however, we leave this question for future research.

An interested reader would naturally ask how would the
standard GC test behave if applied to time-reversed time series
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FIG. 6. (a) CCM skill, (c) predictability improvement, and (e) conditional
mutual information (10) as functions of coupling strength € for the X — Y
direction (solid red line) and for the opposite direction (dashed black line).
[(b), (d), and (f)] The same as (a), (c), and (d), respectively, but for time-
reversed time series. All results for the unidirectionally coupled Rossler
systems with § = 30.

from chaotic systems, or, vice versa, what would be the results
of the CCM and PI methods applied to the AR model and
time-reversed AR model time-series? Unfortunately, we can-
not report such results, since the standard GC test typically
fails when applied to nonlinear time series such as the used
output of the coupled Rossler systems. On the other hand,
the CCM and PI methods employ the geometry of attractors
of dynamical systems and cannot bring consistently correct
results when applied to stochastic systems such as the used
AR model. Recently, Krakovskd et al.*' have analysed six
methods for causality detection, including the three used here,
and evaluated their performance when applied on different
types of data, including an AR model and coupled chaotic sys-
tems. The failures of methods designed for a specific type of
a system and applied to a different one are described in terms
of false positive or false negative results.

V. TEMPORAL ASYMMETRY AND IRREVERSIBILITY

In 1996, Palus*? proposed to evaluate the Kullback-
Leibler divergence K(p~, p*) between the probability distri-
butions p~ = p{x(#),x(t + ), ..., x[t + (m — 1)t],x(t + m7)}
andp = p{x(t + m7),x[t + (m — Dt],...,x(t + 7),x(t)} in
order to quantify the temporal asymmetry of a time series
{x()}. This measure indicated that the temporal asymme-
try might be one of nonlinear properties of normal human
electroencephalogram.*?

Recently, an exact relationship has been derived between
dissipation and the distinguishability of a process from its time
reverse, quantified by the KLD between probability densities
of forward and backward system states.*>** This relation says
that the dissipation results from the asymmetry between the
forward and backward evolutions of a system: it is zero only
when p~ = p*. The above expression is also consistent with
a proposal, linking the time-asymmetry of the Kolmogorov-
Sinai entropy to the entropy production of the dynamical
system.*> The result of Gaspard® provides an interpretation
of the entropy production as a manifestation of the time-
reversal symmetry breaking. In the following development,
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Rold4n and Parrondo*® showed that the above defined KLD
K(p~,p*) applied to stationary time series provides informa-
tion about the entropy production of the physical mechanism
generating the series, even if one ignores any detail of that
mechanism.

Let us estimate K(p—, p<) for the above unidirectionally
coupled Rossler systems using a simple equiquantal binning
algorithm.? The estimates for n-tuples x(£), x(t + 1), .. ., x[t +
(n — 1)7] for n = 3,4, 5 and different values of t give quali-
tatively consistent results (the same shape of curves although
different values). Because of the inherent estimator bias, the
“instrumental zero,” or the range for K(p™,p<") values for
time symmetric processes, was estimated using the Fourirer
transform surrogate data, used also for testing the statisti-
cal significance of CMI estimates by Palu§ and Vejmelka.”?
K(p~,p*) for both systems as the function of the coupling
strength € is plotted in Fig. 7. We see that all values for the
Rossler systems are distinctively higher than the range of the
surrogate data, that is, the observed dynamics breaks the time-
reversal symmetry. Due to dissipation and a positive entropy
production rate, the studied chaotic dynamics is not reversible
in time so that the backward run of the process cannot occur
naturally. K(p~™, p*) for the driving system X is constant for
all values of € (just the straight line is perturbed by the vari-
ance of the estimator). K(p~,p*) for the driven system Y
reflects the decreasing behaviour of its positive LE (Fig. 3)
till the synchronization threshold and then it starts to rise and
reach the K(p™,p) value of the system X when the sys-
tem Y becomes fully slaved to X. This is a nice example how
information-theoretic measures relate various properties of
chaotic dynamical systems—the level of time irreversibility is
related to the entropy production which is related to the expo-
nential divergence of trajectories measured by the positive LE
according to the theorem of Pesin.*’ The levels of irreversibil-
ity of the synchronized systems adjust to a common value, in
compliance with our original concept of synchronization as
a process of adjustment of information or entropy production
rates.”*

VI. SUMMARY OF RESULTS AND THEIR APPLICATION

In the above numerical study, we have demonstrated that
the chaotic dynamical systems violated the Granger causal-
ity principle 1 that the cause precedes the effect. On the
other hand, a short excursion to measuring time-irreversibility
explained that chaotic processes are not reversible in time.
In other words, such a process, obtained by the time rever-
sal of a chaotic process, cannot occur in nature. Then, what
is the scientific value of the presented results? Besides bet-
ter understanding of different causality detection methods, the
time reversal can help researchers in understanding mecha-
nisms underlying causal interactions observed in experimental
data. Let us have a look at two examples of detected causality
already described in scientific literature.

Runge et al.* presented a method for detecting causality
in multivariate time series and identified a number of causal
links in the Earth climate system based on the analysis of
global near-surface air pressure field. The continuous spatio-
temporal pressure field is originally represented by a very
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FIG. 7. The Kullback-Leibler divergence K(p~,p) between the forward
and backward joint probability distributions for the driving system X (dot-
ted black line) and the driven system system Y (solid red line) as a function
of coupling strength € for the unidirectionally coupled Rossler systems. The
grey line and whiskers present mean F 2 standard deviations of KLD for a
set of Fourier transform surrogate data.

high-dimensional data with approximately 40 thousand vari-
ables. Using a dimensionality reduction algorithm according
to Vejmelka et al.,>® about 60 climate variability modes were
extracted. Each mode, represented by a single time series, is
localized in a particular Earth region and is typically related
to a climate phenomenon occurring in that region. The mode
related to the El Nifio Southern Oscillation (ENSO) main
area and phenomenon has been found influencing many other
regions worldwide. One such causal link leads to the mode
located in the Arabian Sea (see Figs. 5 and 6 in Vejmelka et
al*® and Fig. 3 in Runge er al.*°). Let us analyse the monthly
time series™® related to these two climate variability modes.
The CMI analysis confirms that the main direction of causal-
ity leads from the ENSO mode to the Arabian Sea mode
[solid red line in Fig. 8(a)]. After the time reversal [Fig. 8(b)]
also the causality direction reversed. This behaviour has been
observed in the linear AR model (13), i.e., the observed
causality corresponds to a linear transfer of a time-delayed
signal. Hlinka et al.>' add to our result their observation, that
the direction of causality in the global air temperature field
basically agrees with the prevailing direction of winds in the
same areas. Thus the causality, or information transfer”! in the
global climate system, is a consequence of the transport of air
masses and related energy. (There are, however, highly non-
linear phenomena in the Earth climate, which might behave
differently, but will not be discussed here; e.g., the ENSO
dynamics itself, or interactions of the annual cycle’® with
slower climate oscillations? in mid-latitudes.)

Musizza et al.>* analysed interactions between brain,
heart, and respiration in rats undergoing anaesthesia. In the
vigilant state, the most pronounced causal link has been found
in cardio-respiratory interactions in which the phase of the
respiratory thythm influences the phase of the heart rhythm.
An example of this causality together with establishing its
statistical significance has also been presented by Palu§ and
Vejmelka.?? The CMI applied to the respiratory and heart
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FIG. 8. (a) Conditional mutual information (10) as a function of time lag t,
characterizing the causal influence of [(a) and (b)] the climatic El Nifio mode
on the Arabian Sea mode (solid red line) and in the opposite direction (dashed
black line); and [(c) and (d)] the respiratory rhythm on the heart rhythm (solid
red line) and in the opposite direction (dashed black line). The results for the
original (forward time) data are in (a) and (c), the results for the time reversed
time series in (b) and (d).

rhythms phases shows a causal link in the direction respira-
tion — heart [solid red line in Fig. 8(c)] persisting up to the
lag about half a second. After the time reversal [Fig. 8(d)],
the direction of causality did not change. As this behaviour
has been observed in nonlinear, chaotic dynamical systems,
the present result can be considered as an additional support
for understanding the cardio-respiratory interactions as a sys-
tem of coupled nonlinear oscillators, coined by Stefanovska
et al.>>® However, we stress “support,” not evidence. Even
linear AR processes of higher order can produce different
behaviour than the example (13). For instance, consider an
AR?2 process in which X drives Y by the term x(# — 1). For
modelling the time reversed process, we express x(f — 2)
and y(¢z — 2) as functions of x(¢), x(t — 1), y(¢), y(t — 1). Then
X — Y also in the time reversed version. For the evidence of
a nonlinear dynamical origin of a process and its interactions,
suitable nonlinearity tests’’>® should be also included in the
analysis.

We can also observe the “linear transfer” behaviour of
coupled dynamical systems, however, in a very specific condi-
tion. Such a condition happened in the above Rossler systems.
A close inspection of CMI in Figs. 3(b) and 3(c), and espe-
cially in Figs. 6(e) and 6(f) where the effect is amplified by
the time delayed coupling, shows that the direction of causal-
ity, established by CMI, reversed after the time reversal of the
time series for coupling strength beyond the synchronization
threshold. The explanation of this observation lies in a spe-
cific type of synchronization reached by the analysed Rossler
oscillators. It is called the lag synchronization®® in which the
states of two oscillators are nearly identical, but one system
lags in time to the other. Thus, in the lag synchronization
state for € > 0.125, in spite of the nonlinear dynamical ori-
gin of the signals, their relation corresponds to a transfer of a
time-delayed signal.
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VIl. CONCLUSION

Inference of causality from time series is a challeng-
ing problem when analysing behaviour of various complex
systems. In many cases, the working hypothesis is that the
studied data have been generated by coupled dynamical
systems. Therefore, we focussed on three known causal-
ity detection methods applied to dynamical systems: con-
ditional mutual information* (CMI, also known as transfer
entropy?'), convergent cross-mapping'> (CCM), and the pre-
dictability improvement?’ (PI) method. Two methods (CMI,
PI) have been proposed as a nonlinear generalization of
Granger causality'® (GC) since the unidirectional coupling in
which one system drives another has been considered as a
special case of GC.” Comparing the methods on a theoretical
level, we concluded that the CCM is a method for detecting
coupling between dynamical systems, but it is not a method
for detecting causality in the Granger sense, since it ignores
the time sequence of the cause preceding the effect. Indeed,
the application of the CCM on the time series reversed in time
brought the same results as the original time series recorded
forward in time. The CMI method, when applied to a canon-
ical example of GC in an autoregressive model of order 1,
confirmed its roots in the GC principle: After time-reversal of
the AR time series, the direction of causality also reversed.
However, when both CMI and PI were applied to time series
from chaotic dynamical systems, they behaved as the CCM:
the same direction of causality as for the original data was
also detected for the reversed time series. This violation of
the Granger causality principle that the cause precedes the
effect is probably due to dynamical memory of dynamical sys-
tems. Analysis of time irreversibility of the studied processes,
however, showed that chaotic systems are not reversible in
time. Therefore, the observed violation of the causality prin-
ciple can occur only in a numerical study but not in real-world
systems. The time reversal in causality analysis can help to
distinguish between a linear transfer of a time-delayed sig-
nal and nonlinear interactions of dynamical systems. Any
detection of causality, however, should be accompanied by a
battery of time series analysis methods, namely, tests for non-
linearity and synchronization should be performed, as well as
standard spectral analysis enhanced by time-frequency analy-
sis since causal links can occur in or between different time
scales of multiscale processes.®”

ACKNOWLEDGMENTS

The authors would like to thank two anonymous refer-
ees for their constructive comments which helped to improve
the manuscript. Very special thanks are due to the referee who
included in the report the analysis of the Rossler systems using
the causality method of Liang.?>*® The authors would also
like to thank D. Coufal for integrating the dynamical systems
with the delayed coupling, and B. Musizza and the BRAC-
CIA (EC FP6 Project No 517133 NEST) team for providing
the animal cardiorespiratory data. The climate data were pro-
vided as a supplement to Ref. 50.

This study was supported by the bilateral cooperation
of the Czech and Slovak Academies of Sciences Project

Chaos 28, 075307 (2018)

SAV-15-18. AK., J.J., and M.C. were also supported by the
Slovak Grant Agency for Science (Grant No. 2/0011/16) and
by the Slovak Research and Development Agency (Grant No.
APVV-15-0295), M.P. by the Czech Health Research Council
(Project No. NV15-33250A).

APPENDIX

The parameters of the AR model (13) were chosen such
that the model provides long runs of nontrivial stationary time
series. Equivalent results can be also obtained for different
sets of parameters. The first 50 000 iterations were discarded
as possible transients and following 131072 samples were
recorded and used for the CMI computations.

The unidirectionally coupled Rossler systems were inte-
grated using the ode8 (Dormand-Prince) solver in the
MATLAB® Simulink® environment. The fixed step size
0.0785 was used in the integration, and the data were down-
sampled to each fourth giving the sampling step 0.314. For the
case § = 0, also, the alternative numerical integration based
on the adaptive Bulirsch-Stoer method®' was used. The latter
method uses an adaptive integration step, however, the final
sampling time 0.314 was prescribed, which leads to approx-
imately 20 samples per period. Data from both integration
methods give equivalent results. After the initialization, 5000
samples were discarded and the following 131072 samples
were recorded and used for the CMI computations. The subset
of the first 50 000 samples was used for PI and CCM computa-
tions. The first system was initialized using coordinates from
the Rossler attractor (11.120979, 17.496796, 51.023544), for
the second these values were multiplied by a random number
between 0.5 and 1.5 {e.g., y;1(0) = 11.120979 * [ran(iseed) +
0.5]}. The experiments with the Bulirsch-Stoer method were
repeated for different sets of random initial conditions. Due
to discarding of the transient data, all runs gave equivalent
results, i.e., the presented results do not depend on initial
conditions.

The parameters of the systems were chosen as in the
previous study.”
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