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This study investigated the effects of subchronic (−)-epicatechin (Epi) treatment on locomotor activity and hypertension
development in young spontaneously hypertensive rats (SHR). Epi was administered in drinkingwater (100mg/kg/day) for 2 weeks.
Epi significantly prevented the development of hypertension (138 ± 2 versus 169 ± 5mmHg, 𝑝 < 0.001) and reduced total distance
traveled in the open-field test (22 ± 2 versus 35 ± 4m, 𝑝 < 0.01). In blood, Epi significantly enhanced erythrocyte deformability,
increased total antioxidant capacity, and decreased nitrotyrosine concentration. In the aorta, Epi significantly increased nitric
oxide (NO) synthase (NOS) activity and elevated the NO-dependent vasorelaxation. In the left heart ventricle, Epi increased
NOS activity without altering gene expressions of nNOS, iNOS, and eNOS. Moreover, Epi reduced superoxide production in
the left heart ventricle and the aorta. In the brain, Epi increased nNOS gene expression (in the brainstem and cerebellum) and
eNOS expression (in the cerebellum) but had no effect on overall NOS activity. In conclusion, Epi prevented the development
of hypertension and reduced locomotor hyperactivity in young SHR. These effects resulted from improved cardiovascular NO
bioavailability concurrently with increased erythrocyte deformability, without changes in NO production in the brain.

1. Introduction

Arterial hypertension is a frequent health problem world-
wide. Primary hypertension is detectable in children and
adolescents and is increasing in prevalence [1]. Attention
deficit hyperactivity disorder (ADHD) is one of the most
common developmental disorders that affects approximately
5–7% of children and adolescents [2]. The rate of learning
disabilities, including ADHD, is significantly higher for
childrenwith sustained primary hypertension as compared to
children without hypertension [3]. Arterial hypertension, in
addition to other mechanisms, was associated with reduced

deformability of erythrocytes, which may participate in the
development of both arterial hypertension [4] and behavioral
changes.

Spontaneously hypertensive rats (SHR) are a commonly
used model of human essential hypertension. SHR also serve
as an experimental model of ADHD due to their locomotor
hyperactivity and reduced anxiety [5, 6]. However, it is not
clear whether the pathways involved in the development of
hypertension overlap with those involved in the modulation
of locomotor activity. Notably, NO serves as vasodilator in
the cardiovascular system (CVS) and as neurotransmitter
and neuromodulator in the central and peripheral nervous
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systems. Therefore, alterations in NO production affect both
blood pressure (BP) and behavior. Indeed, neuronal nitric
oxide synthase (nNOS) was shown to be involved in various
behavioral abnormalities, including ADHD [7, 8].

Oxidative stress is the excessive formation of reactive
oxygen species (ROS), especially superoxide (O

2

∙−), to a
level exceeding the maximal capacity of the antioxidant
defense mechanisms of the organism. Oxidative stress has
been found to be involved in many disease states, includ-
ing hypertension and behavioral/mental disorders, in both
rodents and humans [9–11]. Superoxide is produced by var-
ious physiological aerobic metabolic processes as well as by
several enzymatic pathways. One of the main sources of O

2

∙−

in living organisms is nicotinamide adenine dinucleotide
phosphate oxidase (NADPH oxidase); however, uncoupled
nitric oxide synthase (NOS) may also be a significant source
of ROS [9]. Furthermore, increased O

2

∙− production may
lead to formation of peroxynitrite, a strong prooxidant, which
causes peroxynitrite-related cellular damage [12], observed in
various cardiovascular disorders [13, 14].

Over the past two decades, there has been increasing
interest in the potential health benefits associated with the
consumption of flavanol-containing foods [15, 16]. Several
studies have reported that the consumption of flavanol-
containing foods was associated with a lower prevalence
of cardiovascular diseases [17, 18]. Furthermore, several
meta-analyses have confirmed a BP-lowering capacity and
antihypertensive effect of flavanol-rich foods derived from
cocoa [19, 20]. BP-lowering effect of cocoa-derived products
depended on the dose of ingested (−)-epicatechin (Epi) [21].

Epi is absorbed well from the gastrointestinal tract in
both humans and rats, detectable in plasma approximately
30min after ingestion. Epi concentrations peak 2-3 h after
ingestion and return to baseline by 6–8 h [22, 23], suggesting
that the continuous intake of Epi-containing food is needed
tomaintain elevated circulation levels.TheBP-reducing effect
of Epi was shown in models of L-NAME-induced [24],
fructose-induced [25], andDOCA-salt hypertension [26].We
have previously observed that Epi reduces BP and improves
endothelium-dependent vasorelaxation in adult SHR with
fully developed hypertension via improved vascular NO
bioavailability [27].

Regarding the role of Epi in the central nervous system
(CNS), recent studies have demonstrated that Epi can cross
the blood-brain barrier (BBB) and enter the brain [28, 29],
which may result in altered CNS function. Studies have also
shown that prolonged cocoa flavanol consumption improves
cognitive function, blood pressure control, and metabolic
profile in elderly subjects [30]. Although the underlying
mechanism responsible for the observed effects of cocoa-
derived foods on the CNS remains unknown, it may be
associated with improved NO bioavailability, vascular func-
tion, and/or increased erythrocyte deformability, which all
together may improve organ perfusion.

Therefore, the aim of this studywas to investigate whether
the subchronic treatment of peripubertal SHR with Epi may
prevent the development of hypertension and locomotor
hyperactivity in this genetic model of hypertension and
ADHD. To elucidate the mechanism(s) of Epi action, we

investigated superoxide and NO production as well as the
gene expression of the p22phox subunit of NADPH oxidase
and individual NOS isoforms in the CVS and selected regions
of the brain, total antioxidant capacity of plasma, nitrosative
damage, the deformability of erythrocytes, and vascular
function.

2. Material and Methods

2.1. Animals and Treatment. Young 5-week-old SHR males
(𝑛 = 18) were used. All rats were born in our certified
animal facility (Institute of Normal and Pathological Phys-
iology SAS) in order to maintain the same environmental
background for all animals. The rats were housed two per
cage at constant temperature 22–24∘C and humidity (45–
60%) with a 12 : 12 h light-dark cycle (lights on from 06.00
a.m. to 06.00 p.m.) and fed a standard pellet diet with tap
water ad libitum. At the beginning of the experiment (Basal,
B), rats were randomly assigned to the control group (Cont,
𝑛 = 8) or a group treated with Epi (Epi, 𝑛 = 10). Epi was
administered to rats diluted in the appropriate daily volume
of water, in concentration that resulted in a final daily dose
of Epi approximately 100mg/kg body weight/day, for two
weeks. Daily volume of water was assessed for each cage
of rats prior to starting the experiment and adjusted daily.
Average daily drinking volume of rats was 17 ± 0.8 mL/100 g
of body weight and Epi did not influence it. Concentrated Epi
solution (100mg/mL) was prepared fresh every day before
administration to rats by dilution of Epi in tap water (85∘C,
3min, in water bath). Calculated volume of concentrated
Epi solution was added to assessed volume of fresh tap
water in the bottles of rats to reach the dose 100mg/kg
body weight/day after drinking out all liquid during 24 h
period. Concentration of Epi in bottles was approximately
0.58mg/mL. If rats drank the given volume of liquid earlier,
fresh water was added to the bottle to prevent thirst and/or
stress from the lack of water. Epi solutions (both concentrated
and diluted in bottles) were protected against the light. Fresh
Epi was administered to rats at the end of the light period,
as the majority of drinking activity of rodents occurs in the
dark (active) period [31]; thus approximately 80% of solution
was drunk during the dark period and the rest in the light
period.Thermal and time-dependent stability of Epi in water
has been shown previously [32].

At the end of the 2-week treatment, the rats were exposed
to brief CO

2
anesthesia. Rats were subsequently killed by

decapitation, and trunk blood was collected to evaluate
erythrocyte deformability, nitrotyrosine concentration, and
total antioxidant capacity. Wet mass of the left heart ven-
tricle (LHV) was determined to calculate relative weight
(LHV/body weight) in order to ascertain the degree of LHV
hypertrophy.

All procedures were performed in accordance with the
institutional guidelines and approved by the Department of
Animal Wellness, State Veterinary and Food Administration
of the Slovak Republic.

2.2. Blood Pressure and Heart Rate. Systolic blood pressure and
heart rate (HR)weremeasured in preconditioned, conscious rats
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by noninvasive tail-cuff plethysmography between 08:00 a.m.
and 11:00 a.m. as described in detail previously [33]. Each
value was calculated as the average of five measurements.
BP values were measured repeatedly at the beginning of the
experiment (B) and after the seventh, tenth, and fourteenth
day of treatment. Body weight (BW) was determined on the
same days.

2.3. Open-Field Test. Rat motor activity and anxiety level
were measured using the open-field test (OF) between 07:30
a.m. and 10:00 a.m. The open-field apparatus comprised a
100 × 100 cm area with a black floor and black walls (50 cm
high) with a virtual central zone (55 × 55 cm) and corners
(12.5 × 12.5 cm). The OF was illuminated by warmwhite
light at 150 lx. Rats were placed in the centre of the OF;
motor activity was recorded and evaluated by ANY-maze
video-tracking software (Stoelting, USA) during 10 min
trials. The OF area was cleaned with soapy water and dried
with paper towels after each trial. The following behavioral
parameters were determined: total distance traveled, total
time of immobility, central zone distance traveled, and time
spent in the central zone and in the corners. Average speed
was calculated as the ratio of total distance traveled to time of
mobility for a given rat. As anxiety markers, relative central
zone distance (calculated as the percentage of central zone
distance with respect to total distance traveled) and relative
central zone time (calculated as the percentage of time spent
in the central zone with respect to total mobility time) were
determined [34].

All rats were tested one day before the beginning of the
experiment to determine baseline measurements (B) in 5-
week-old rats. Rats were randomly assigned to the control
or Epi-treated group and tested again two days before the
end of the experiment (∼7 weeks of age). Thus, OF behavior
was determined one day prior to BP measurement to avoid
the effect of the OF test on BP level. All cages with rats were
placed into a test room with the lighting and environmental
conditions described above, approximately 12 h before the
test.

2.4. Erythrocyte Deformability, Total Antioxidant Capacity of
Plasma, and Nitrotyrosine Concentration. Trunk blood sam-
ples were collected in heparinized test tubes and immediately
thereafter centrifuged at 850×g for 10min at 4∘C to obtain
plasma and erythrocytes. Plasma was separated, aliquoted,
and stored at −80∘C until the time of analysis.

After removing the plasma, the buffy coat and upper
20% of packed red blood cells were removed by aspira-
tion. The remaining erythrocytes were washed three times
in manufacturer-formulated Cellpack solution (diluent for
Sysmex blood analyser, Sysmex F–820, Japan). The washed
erythrocytes were diluted in Cellpack solution (1 : 1, v : v) and
adjusted to 30–40% hematocrit. The diluted suspension of
erythrocytes was filtered by centrifugation through mem-
brane filters with pores of 5𝜇m in diameter (Ultra-free-
MC SV Centrifugal Filter, Millipore, Germany) at 1400 rpm
(Hettich MIKRO 120 centrifuge). Erythrocyte deformability
was calculated as the percentage of filtered erythrocytes
with respect to the number of erythrocytes counted before
centrifugation [35].

The total antioxidant capacity (TAC) of plasma was
measured by determining the trolox equivalent antioxidant
capacity as described previously by [36]. Quantification was
performed using the dose-response curve for the reference
antioxidant trolox, which is a water-soluble form of vitamin
E. The results are presented as mmol of trolox/L. TAC was
determined in six control and six Epi-treated rats.

Concentration of nitrotyrosine in plasma was detected by
ELISA using commercially available kit (HK501-02, Hycult
Biotech, Uden, Netherlands) according to the manufacturer’s
protocol. Absorbance of the plasma samples was measured
at 450 nm. The nitrotyrosine concentration of samples was
determined from the standard curve and expressed in
nmol/L.

2.5. Superoxide Production. The production of superoxide
(O
2

∙−) was measured in tissue samples of the LHV and
thoracic aorta (15–20mg) by lucigenin-enhanced chemi-
luminescence (50𝜇mol/L) using a TriCarb 2910TR liquid
scintillation analyser (Perkin Elmer), as described previously
[37]. The results are expressed as counts per minute per
milligram of tissue (cpm/mg).

2.6. Nitric Oxide Synthase Activity. Total NOS activity was
measured in the 20% tissue homogenates of the LHV, aorta,
brainstem, and cerebellum by determining [3H]-L-citrulline
formation from [3H]-L-arginine (MP Biomedicals, USA) as
described previously [33] and expressed as pmol/min/mg of
tissue proteins as determined using the Lowry method. NOS
activity was determined in six control and eight Epi-treated
rats.

2.7. Vascular Function. The vascular reactivity of the aorta
was investigated as described previously [38]. Endothelium-
dependent vasorelaxant responses were examined in rings
precontracted with phenylephrine (3 𝜇mol/L) to produce a
stable plateau of contraction. After a contraction plateau
had been reached, increasing concentrations of acetylcholine
(ACh, 0.001–10𝜇mol/L) were added cumulatively. When
the ACh-induced concentration-relaxation curve was com-
pleted, the drugs were washed out (20min), and the same
experiment was repeated after 25min preincubation with
NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-
NAME, 300 𝜇mol/L). After this procedure and a 30 min
washout period, the NO donor sodium nitroprusside (SNP,
0.001–10 𝜇mol/L) was added cumulatively to the 3 𝜇mol/L
phenylephrine precontracted aortae.The extent of vasorelax-
ation was expressed as the percentage change with respect to
stable phenylephrine-induced contraction.

NO-independent component of endothelium-dependent
ACh-induced relaxation was determined as the rest of relax-
ation present after inhibition of vascular NO production with
L-NAME and expressed as the area under the concentration-
response curve (AUC), in arbitrary units (a.u.). Endothelium-
dependent ACh-induced relaxation mediated by NO (i.e.,
NO-dependent component) was calculated as the difference
in the AUC before L-NAME pretreatment (i.e., total ACh-
induced relaxation) and after L-NAME pretreatment (i.e.,
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Table 1: Primer pairs used to amplify selected genes.

Genes Forward (sense) primer Reverse (antisense) primer Temp
eNOS CCC ACA GTC TGG TTG CT TCA CCG TGC CCA TGA GT 57∘C
iNOS TGG AGG TGC TGG AAG AGT T GGA GGA GCT GAT GGA GTA GT 57∘C
nNOS CGC TAC GCG GGC TAC AAG CA GCA CGT CGA AGC GGC CTC TT 60∘C
𝛽-actin AAT CGT GCG TGA CAT CAA AG ATG CCA CAG GAT TCC ATA CC 57∘C
p22phox CAG GCA TAT ACC CGC TAC CT TCT GTC ACC CTG TGC TTG AC 60∘C

NO-independent relaxation). AUCwas calculated from indi-
vidual concentration-response curves, as it was described in
detail previously [33].

2.8. Gene Expression. Expression levels of neuronal NOS
(nNOS), inducible NOS (iNOS), and endothelial NOS
(eNOS) as well as p22phox (a transmembrane subunit of
NADPH oxidase) were investigated by real-time quantitative
polymerase chain reaction (RT-qPCR) using a CFX96 Real-
Time PCR detection system (Bio–Rad, USA). Total RNA
from the brainstem, cerebellum, and LHV samples was
isolated using TRIsure reagent (Bioline, United Kingdom)
according to themanufacturer’s protocol.The amount of total
RNA isolated was quantified spectrophotometrically at 260/
280 nm using a NanoDrop spectrophotometer (Thermo Sci-
entific, USA).

For reverse transcription (Eppendorf Mastercycler, Ger-
many), 1 𝜇g of total RNA was added to 20 𝜇L of reaction
medium using a SensiFAST� cDNA Synthesis Kit (Bioline,
UK) according to the manufacturer’s protocol.

The primer pair specifications used to amplify the
genes studied (nNOS, iNOS, eNOS, and p22phox, resp.) as
well as a housekeeping gene (𝛽-actin) are listed in Table 1.
The PCR mixture contained 1.5 𝜇L of template cDNA
diluted tenfold, 10 𝜇L SensiFAST mix (SensiFAST SYBR No–
ROX kit, Bioline, UK), 1.5 𝜇L of both forward and reverse
primers (Metabion, Germany, 4𝜇mol/L), and 5.5 𝜇L diethyl-
pyrocarbonate-treated water (Sigma–Aldrich, Germany) in
a final volume of 20𝜇L. The thermal cycling conditions
were as follows: (1) 50∘C for 2min, (2) 95∘C for 2min, (3)
39 cycles consisting of (a) 95∘C for 5 sec, (b) an optimal
annealing temperature (depending on the selected primer,
see Table 1) for 10 sec, and (c) 72∘C for 5 sec for PCR product
elongation, and (4) 72∘C for 1.5min. Finally, melt curves for
amplicon analyses were constructed at 50–99∘C, 10 sec/1∘C.
Samples were measured using Bio–Rad CFX Manager soft-
ware (version 2.0) and 𝛽-actin as the housekeeping gene.
Gene expression was determined in six control and eight Epi-
treated rats and expressed as the ratio of gene expression with
respect to 𝛽-actin levels.

All chemicals used in this study were purchased from
Sigma–Aldrich (Germany) and Merck Chemicals (Ger-
many), if not stated differently. Epiwas purchased fromSigma
(Germany, Cat. no. E1753).

2.9. Statistical Analysis. Results were analysed by unpaired
Student t-test or one-way analysis of variance (ANOVA)

where appropriate. BP, HR, and BW were analysed by two-
way ANOVA (treatment × time). Vascular function was
analysed by two-way ANOVA (treatment × ACh concentra-
tion). All ANOVA analyses were followed by the Bonferroni
post hoc test. Values were considered to differ significantly
when 𝑝 < 0.05. Data are presented as mean ± standard
error of the mean (SEM). Correlations between variables
were determined using Pearson’s correlation coefficient (r).
GraphPad Prism 5.0 (GraphPad Software, Inc., USA) and
Statistica 7 (Stat Soft, Inc., USA) were used for the statistical
analyses.

3. Results

Two-week Epi treatment had no effect on the increase in BW
controlled for age (data not shown). Relative weight of the
LHV was similar in the Epi (2.21 ± 0.07mg/g) and control
(2.31 ± 0.06mg/g) groups. BP was reduced by approximately
18% in Epi-treated rats as compared to controls at the end of
treatment (Figure 1(a)). Epi treatment reduced heart rate only
on the 10th day of treatment (571.8±17 bpm in control versus
524.8 ± 8.2 bpm in Epi, 𝑝 < 0.05) while only nonsignificant
difference (540±19 bpm versus 530±9 bpm)was observed on
day 14. In addition, Epi increased erythrocyte deformability
by approximately 8% (𝑝 < 0.05), increased the TAC (𝑝 <
0.05), and reduced nitrotyrosine concentration in plasma
(𝑝 < 0.05) versus controls (Figures 1(b), 1(c), and 1(d)).

Regarding rat behavior, repeated testing in the open-field
at the end of experiment led to habituation of locomotor
activity detected as reduction of total distance traveled
and increase of total immobility compared to Basal values
(Figures 2(a) and 2(b)). Epi administration led to a significant
decrease in locomotor activity as represented by total distance
traveled (Figure 2(a)), increased immobility (Figure 2(b)),
and reduced the average speed of movement (Figure 2(g))
in treated animals as compared to age-matched controls. Epi
decreased the distance traveled (Figure 2(c)) and time spent
in the central zone (Figure 2(d)). In addition, Epi reduced
both relative distance traveled and relative time spent in
the central zone (Figures 2(e) and 2(f)). Epi treatment also
significantly elevated time spent in the corners (Figure 2(h))
in treated animals as compared to controls.

Epi significantly reduced O
2

∙− production and increased
NOS activity in the LHV (Figures 3(a) and 3(b)). However,
Epi failed to affect gene expression levels for individual NOS
isoforms (Figures 3(c)–3(e)) and p22phox (Figure 3(f)) in the
LHV.
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Figure 1: Effect of (−)-epicatechin on systolic blood pressure (a), deformability of erythrocytes (b), total antioxidant capacity of plasma (c),
and plasma nitrotyrosine concentration (d) in spontaneously hypertensive rats. ∗𝑝 < 0.05 versus Cont group. Values represent mean ± SEM;
𝑛 = 6–8 for Cont and 𝑛 = 6–10 for Epi. Abbreviations: Cont: control group and Epi: (−)-epicatechin-treated group.

In the aorta, Epi significantly reduced O
2

∙− production
and increased NOS activity (Figures 4(a) and 4(b)). Neither
endothelium-independent relaxation responses induced by
SNP nor overall endothelium-dependent relaxation induced
by ACh differed significantly in the aortae of control as
compared to Epi-treated rats (Figures 4(c) and 4(d)). Acute L-
NAME pretreatment, which inhibited NO-dependent relax-
ation, inhibited relaxationmore strongly in Epi-treated rats as
compared to controls (Figure 4(e)). Calculation of the AUC
revealed that Epi significantly increased endothelial NO-
dependent relaxation by approximately 26% versus control
and concurrently decreased endothelial NO-independent
relaxation in the aorta (Figure 4(f)).

NOS activity was unaffected by Epi in both brain regions
investigated (brainstem and cerebellum) (Figures 5(a) and
6(a)). Interestingly, NOS activity in the brainstem and cere-
bellum correlated positively with total distance traveled (as
shown in Figures 5(b) and 6(b)) as well as with central zone
distance traveled in the OF (𝑟 = 0.53, 𝑝 < 0.05, 𝑛 = 14 for
brainstem; 𝑟 = 0.62, 𝑝 < 0.02, 𝑛 = 14 for cerebellum).

Gene expression levels of nNOS increased (Figures 5(c)
and 6(c)) while iNOS levels remained the same in both brain
regions investigated in Epi-treated rats (Figures 5(d) and
6(d)). Interestingly, eNOS and p22phox gene expression were
increased in the cerebellum of Epi-treated rats as compared
with controls (Figures 6(e) and 6(f)). This effect was not
observed in the brainstem.

4. Discussion

This study investigates the effect of subchronic treatmentwith
Epi in young SHR rats, at the peripubertal age, which is a
critical developmental period when BP increases rapidly in
SHR [39, 40]. We show that continuous Epi treatment during
this period significantly prevented BP increase and reduced
spontaneous locomotor hyperactivity in SHR. In addition,
we show here for the first time that Epi treatment increased
erythrocyte deformability in SHR.

In this study, Epi was administered continuously in tap
water. It is known that Epi is subject to partial degradation in
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Figure 2: Effect of (−)-epicatechin treatment on open-field behavior of spontaneously hypertensive rats. Total distance traveled (a), total
immobility (b), distance traveled in the central zone (c), time spent in the central zone (d), relative central zone distance (e), relative central
zone time (f), average speed (g), and time spent in the corners (h). Values represent mean ± SEM; 𝑛 = 18 for Basal, 𝑛 = 8 for Cont, and 𝑛 = 10
for Epi. x𝑝 < 0.05 versus Basal values; ∗𝑝 < 0.05 versus Cont group. Abbreviations: Cont: control group and Epi: (−)-epicatechin-treated
group.
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Figure 3: Effect of (−)-epicatechin treatment on superoxide production (a), nitric oxide synthase (NOS) activity (b), gene expression
of neuronal NOS (nNOS, c), inducible NOS (iNOS, d), endothelial NOS (eNOS, e), and the p22phox subunit of nicotinamide adenine
dinucleotide phosphate oxidase (f) in the left heart ventricle of spontaneously hypertensive rats. Values represent mean ± SEM; 𝑛 = 6–8
for Cont and 𝑛 = 8–10 for Epi. ∗𝑝 < 0.05 versus Cont group. Abbreviations: Cont: control group and Epi: (−)-epicatechin-treated group.

water and further metabolism after ingestion. The presence
of Epi and/or its metabolites (e.g., 3󸀠-O-methyl epicatechin
and 4󸀠-O-methyl epicatechin) in plasma as well as in the
brain was detected previously after administration of the
same dose of Epi as used in this study [41]. However, despite
the fact that biologically active substance(s) may differ from
Epi itself, this study demonstrates the significant biological
effects of orally administered Epi. We used the given dose
of Epi (100mg/kg/day), as we were interested in possible
central effects of Epi, despite the fact that BP-lowering
effect can be reached by lower doses. As the relatively
high dose of Epi was used in this study, we determined
creatinine, uric acid, and urea in plasma at the end of Epi
treatment to reveal whether the given dose of Epi is safe
or if it produces adverse side effects to kidneys. No signs

of renal toxicity of the given dose of Epi were observed in
our study (see Supplementary Materials available online at
http://dx.doi.org/10.1155/2016/6949020).

The Epi-mediated prevention of hypertension develop-
ment was associated with elevated plasma TAC and reduced
superoxide production in the LHV and aortae of Epi-
treated rats. However, these findings were not associated with
changes in the gene expression of the p22phox subunit of
NADPH oxidase, one of themain sources of O

2

∙− in the CVS.
These findings support other studies in which the antioxidant
capacity of Epi was associated either with activation of the
enzymes involved in the antioxidant defense system [42] in
the heart or with radical-scavenging properties in endothelial
cells without affecting NADPH oxidase activity in vitro [43,
44]. On the other hand, short-term Epi cotreatment reduced

http://dx.doi.org/10.1155/2016/6949020
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Figure 4: Effect of (−)-epicatechin treatment on superoxide production (a), NOS activity (b), endothelium-dependent relaxation induced by
acetylcholine (c), endothelium-independent relaxation induced by SNP (d), inhibitory effect of L-NAMEpretreatment (300𝜇mol/L) onACh-
induced relaxation (e), andNO-dependent andNO-independent components of relaxation (f) in the aorta of spontaneously hypertensive rats.
Values represent mean ± SEM; 𝑛 = 6–8 for Cont and 𝑛 = 6–10 for Epi. ∗𝑝 < 0.05 versus Cont group. Abbreviations: ACh: acetylcholine, AUC:
area under the curve, a.u.: arbitrary units, Cont: control group, Epi: (−)-epicatechin-treated group, L-NAME: NG-nitro-L-arginine methyl
ester, NO: nitric oxide, NOS: nitric oxide synthase, and SNP: sodium nitroprusside.

protein expression levels of the p47phox subunit of NADPH
oxidase in the hearts of rats with L-NAME-induced hyperten-
sion [24] and in the renal cortex in fructose-fed rats [45], in
contrast to our findings in a genetic model of hypertension.
Regarding nitrosative damage, in vitro studies revealed that

Epi protected cells against peroxynitrite-induced damage [46,
47] similarly as we observed in vivo in blood.

In addition to the reduction in superoxide production
and increased NOS activity in the aorta and LHV as well as
reduced plasma nitrotyrosine concentration, increased aortic
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Figure 5: Effect of (−)-epicatechin treatment on nitric oxide synthase activity (a), correlation between total distance traveled in the open-
field and nitric oxide synthase activity (b) and gene expression of nNOS (c), iNOS (d), eNOS (e), and the p22phox (f) in the brainstem
of spontaneously hypertensive rats. Values represent mean ± SEM; 𝑛 = 6 for Cont and 𝑛 = 8–10 for Epi. ∗𝑝 < 0.05 versus Cont group.
Abbreviations: Cont: control group, Epi: (−)-epicatechin-treated group, NOS: nitric oxide synthase, eNOS: endothelial NOS, iNOS: inducible
NOS, nNOS: neuronal NOS, and p22phox: subunit of nicotinamide adenine dinucleotide phosphate oxidase.

endothelial NO-dependent relaxation also proofs better NO
bioavailability in the CVS. Interestingly, no effect of Epi on
e/i/nNOS gene expression in the LHVwas found in this study,
suggesting that Epi influences the catalytic properties of NOS
but not its gene expression in the CVS. A similar mechanism
was demonstrated previously in cultured endothelial cells
[48] as well as in the cardiac tissue of L-NAME-treated rats
[24]. Therefore, our study in a genetic model of spontaneous
hypertension confirms the ability of Epi to increase the

CVS capacity for NO production resulting in elevated NO
bioavailability; however, the involvement of individual NOS
isoforms remains to be clarified.

Regarding vascular function, acute Epi administration
induces both endothelium-dependent and endothelium-
independent relaxation in the isolated arteries of nor-
motensive rats and in human arteries [49–51]. The Epi-
induced endothelium-dependent relaxation in normotensive
rats was primarily mediated by NO [49, 50]. Recent study
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Figure 6: Effect of (−)-epicatechin treatment on nitric oxide synthase (NOS) activity (a), correlation between total distance traveled in the
open-field and NOS activity (b) and gene expression of nNOS (c), iNOS (d), eNOS (e), and p22phox (f) in the cerebellum of spontaneously
hypertensive rats. Values represent mean ± SEM; 𝑛 = 6 for Cont and 𝑛 = 8–10 for Epi. ∗𝑝 < 0.05 versus Cont group. Abbreviations:
Cont: control group, Epi: (−)-epicatechin-treated group, eNOS: endothelial NOS, iNOS: inducible NOS, nNOS: neuronal NOS, and p22phox:
subunit of nicotinamide adenine dinucleotide phosphate oxidase.

of Moreno-Ulloa et al. has suggested G protein-coupled
estrogen receptor (GPER) as a potential mediator of Epi
effects in vasculature, which was associated with elevated
phosphorylation of eNOS in Wistar rats [52]. We have
shown recently that relatively short-term (10-day) dietary
administration of Epi reversed endothelial dysfunction in the
femoral artery of adult SHR by enhancing the NO-dependent

component of relaxation [27]. Similarly, in people with never-
treated essential hypertension, administering flavanol-rich
dark chocolate (which has a high concentration of Epi)
for two weeks normalized the NO-mediated endothelium-
dependent relaxation in the brachial artery [53]. In this study,
Epi elevated NOS activity in the aorta and enhanced the NO-
dependent component of ACh-induced relaxation but failed
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to affect overall relaxation in peripubertal SHR. Yet despite
the lack of an effect on overall relaxation in the aorta, the
improvements in vascular NO bioavailability and the NO-
dependent component of relaxation observed in Epi-treated
rats in this studymay prevent vascular remodeling and reduce
vascular wall stiffness [54], both of which are observed in
hypertension [55–57].

Furthermore, the increased level of erythrocyte deforma-
bility observed in this study suggests improvements in blood
flow as well as oxygenation in individual organs, similarly as
has been recently observed in humans after two-week cocoa
flavanol intake [58]. As erythrocytes contain functional eNOS
and NO increases their deformability [59], it is plausible that
the positive health effects of Epi are associated with the NO-
related modulation of red blood cell properties [60]. Collec-
tively, these observations in various experimental conditions
both in vitro and in vivo suggest multiple mechanisms for
the cardioprotective effects of Epi that are associated with
improved NO bioavailability in the heart and vasculature as
well as with enhancement of mechanical properties of the red
blood cells.

In addition to the cardiovascular effects of Epi, our study
pointed also to possible central effects. As mentioned above,
Epi can cross the BBB [28, 29, 41]. Moreover, BBB was shown
to be damaged in hypertension, specifically, in the brainstem
and cerebellum [56, 61]. We chose these areas of the brain to
focus on because the cerebellum integrates the neural control
of movement and plays a role in the pathogenesis of ADHD
[62]. The brainstem was selected as it is a part of the brain
involved in the control of bodily motor function, in addition
to the regulation of cardiac and respiratory functions.

In humans, the consumption of natural polyphenols,
including cocoa flavanols, results in an acute improvement in
visual and cognitive functions [63, 64], whichmay be relevant
in the treatment of ADHD. Indeed, Pycnogenol�, a polyphe-
nol extract from the bark of the French maritime pine,
significantly reduces hyperactivity and improves attention,
visual-motor coordination, and concentration in children
with ADHD [65]. However, to our knowledge, the effect of
Epi on ADHD symptoms has not yet been investigated in
humans. Several studies in rodents have demonstrated the
variable effects of flavanols on behavior. In Wistar rats, a
single dose of cacao mass showed anxiolytic effects, but 2-
week consumption did not reduce anxiety-related behavior.
Locomotor activity in the OF was unaffected in those rats
[66]. Two-week cocoa polyphenolic extract treatment had an
antidepressant-like effect in Wistar-Unilever rats subjected
to a forced-swim test without accompanying changes in
locomotion in the OF [67]. In adult C57BL/6 mice, Epi
had an anxiolytic effect as represented by an elevated ratio
of distance traveled and time spent in the central zone
of the OF compared to periphery [68]. However, it has
to be noted that all of these studies were performed in
normotensive rodents. We used SHR, which are known to be
locomotor hyperactive with high levels of exploratory activity
and reduced levels of anxiety compared to normotensive rat
strains [5, 69, 70]. In our study, Epi administration attenuated
locomotor hyperactivity as determined by decreases in the

total distance traveled and the average speed of movement as
well as by increases in total immobility. Epi also deceptively
elevated anxiety in the OF, as suggested by reductions in total
distance traveled and time spent in the central zone (in both
absolute and relative values) and increased time spent in the
corners. However, considering the innate hyperactivity and
low anxiety levels of control SHR, Epi, in fact, corrected their
behavioral abnormalities. These alterations were not associ-
ated with changes in NOS activity in the selected brain areas.
However, in contrast to our findings in the LHV, we observed
increased nNOS gene expression in both areas of the brain
investigated here; eNOS gene expression increased only in
the cerebellum. Interestingly, NOS activity in the brainstem
and cerebellum correlated positively with locomotor activity
and negatively with anxiety level (determined as a reduction
in the central zone distance traveled) in the OF. These
correlations were stronger in the cerebellum, suggesting that
cerebellar NO-dependent mechanisms are more significantly
involved in modulation of locomotor activity in young SHR.
Yet, the studies performed to date in rats and in humans
have demonstrated the considerable variability of findings
on the role of NO in the modulation of behavior as well
as the varying effects of NO in different neuroanatomical
structures of the brain, which might even be antagonistic on
the behavioral level [8, 34].

It is of interest that gene expression levels for the p22phox
subunit of NADPH oxidase were increased in the cerebellum
following Epi treatment, which is in contrast to the findings
reported for the CVS in different animal models of hyper-
tension [24–26]. If the Epi-induced upregulation of NADPH
oxidase gene expressionwas to be followed by translation into
functional enzyme, the abovementioned antioxidant effects
of Epi could still maintain ROS at physiological levels. Our
review of the literature did not reveal any study that has inves-
tigated the effect of subchronic Epi treatment on e/i/nNOS or
p22phoxNADPH oxidase subunit gene expression or activity
in the CVS or brain of SHR. Yet our findings suggest that Epi
exerts tissue-specific effects on the expression of individual
NOS isoforms and NADPH oxidase subunits in SHR. These
effects may not correlate with enzyme activity levels in the
corresponding tissue [71].

The simultaneous prevention of BP increase and reduced
hyperactivity of SHR observed in this study suggest the pos-
sibility of a commonmechanism(s) underlying both patholo-
gies. One possiblemechanism is a reduction in noradrenergic
neurotransmission, which is elevated in SHR and associated
with high blood pressure and locomotor hyperactivity [62,
72]. In Epi-treated SHR rats, noradrenergic hyperfunction
may be diminished by presynaptic 𝛼

2
-autoreceptor-mediated

feedback [62, 73], the improvement of calcium signaling
[62, 74], and/or increases in bioavailability of NO [75]. These
effects may prevent hypertension development and decrease
locomotion in young SHR. Another plausible mechanism
is the improvement of regional cerebral blood flow, as its
alterations were observed in SHR and children with ADHD
[62, 76] and flavanol-rich cocoa consumption improved it in
older healthy volunteers [77].

Although our study brought interesting results related
to simultaneous prevention of hypertension and reduction
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of behavioral hyperactivity in juvenescent rats, there are
certain limitations of this study. Firstly, NO production, gene
expressions, and vascular function were determined in the
aorta. These parameters may differ in smaller arteries, so
the effect of Epi, especially in the small resistance arteries,
needs to be investigated. Secondly, we did not determine Epi
and/or Epimetabolites levels in blood,NOSphosphorylation,
and involvement of GPER receptors.Thus, further studies are
needed to elucidate the exact bioactive substance(s) and the
exact site(s) of action of orally administered Epi in preventing
and treating hypertension and behavioral hyperactivity in
young subjects.

5. Conclusion

In conclusion, the results presented here showed that oral Epi
treatment significantly prevented BP increase and reduced
behavioral hyperactivity in young SHR. The mechanism
underlying the positive effects of Epi observed in this study
was related to improved cardiovascular NO bioavailability,
due to elevated NOS activity and reduced O

2

∙− levels in
the CVS concurrently with elevations in plasma antioxidant
capacity as well as red blood cell deformability. Altogether,
these beneficial alterations could result in reduced sympa-
thetic tone and improved cerebrovascular blood flow and
tissue oxygenation, resulting in the prevention of hyper-
tension and the reduction of locomotor hyperactivity. The
results of this study may be relevant in pharmacological
approaches to the prevention and treatment of hypertension
and ADHD comorbidity in young subjects with a significant
family history of hypertension. Our data also suggest tissue-
specific influences of Epi in SHR that should be taken into
account in evaluating the overall effects of Epi-containing
foods.
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multiple-test study of anxiety-related behaviours in six inbred
rat strains,” Behavioural Brain Research, vol. 85, no. 1, pp. 57–69,
1997.

[70] C. Gentsch, M. Lichtsteiner, and H. Feer, “Open field and
elevated plus-maze: a behavioural comparison between sponta-
neously hypertensive (SHR) andWistar-Kyoto (WKY) rats and
the effects of chlordiazepoxide,”Behavioural Brain Research, vol.
25, no. 2, pp. 101–107, 1987.

[71] S. Miyamoto, A. Ochiai, N. Boku et al., “Discrepancies between
the gene expression, protein expression, and enzymatic activity
of thymidylate synthase and dihydropyrimidine dehydroge-
nase in human gastrointestinal cancers and adjacent normal
mucosa,” International Journal of Oncology, vol. 18, no. 4, pp.
705–713, 2001.

[72] N.Herring, C.W. Lee,N. Sunderland, K.Wright, andD. J. Pater-
son, “Pravastatin normalises peripheral cardiac sympathetic
hyperactivity in the spontaneously hypertensive rat,” Journal of
Molecular and Cellular Cardiology, vol. 50, no. 1, pp. 99–106,
2011.

[73] B. Langen and R. Dost, “Comparison of SHR, WKY and
Wistar rats in different behavioural animal models: effect of
dopamineD1 and alpha2 agonists,”ADHDAttention Deficit and
Hyperactivity Disorders, vol. 3, no. 1, pp. 1–12, 2011.

[74] N. Kumar, R. Kant, P. K.Maurya, and S. I. Rizvi, “Concentration
dependent effect of (−)-epicatechin on Na+/K+-ATPase and
Ca2+-ATPase inhibition induced by free radicals in hyperten-
sive patients: comparison with L-ascorbic acid,” Phytotherapy
Research, vol. 26, no. 11, pp. 1644–1647, 2012.

[75] J. Török, “Participation of nitric oxide in different models of
experimental hypertension,” Physiological Research, vol. 57, no.
6, pp. 813–825, 2008.

[76] J. F. Danker and T. Q. Duong, “Quantitative regional cere-
bral blood flow MRI of animal model of attention-deficit/
hyperactivity disorder,” Brain Research, vol. 1150, no. 1, pp. 217–
224, 2007.

[77] F. A. Sorond, L. A. Lipsitz, N. K. Hollenberg, andN. D. L. Fisher,
“Cerebral blood flow response to flavanol-rich cocoa in healthy
elderly humans,” Neuropsychiatric Disease and Treatment, vol.
4, no. 2, pp. 433–440, 2008.


