Contents

Part I	Foundations	of Conservation Biology	1
--------	-------------	-------------------------	---

1	The State of Our Planet	
1	State of the Human Species 4	

State of the Global Environment 7

Land 7
Climate 9
Oceans 11
Freshwater 11

State of the World's Biodiversity 13

Global extinctions 13 Local extirpations 14 Population decay 15
Mass mortality events 15
Genetic diversity 16
Biotic homogenization 16
Seeds of a Good Anthropocene 17

Six reasons to be optimistic 17
The next generation of champions 20

Box 1.1 Success Story The Indian Rhino 21

The Rise of Conservation Biology 25

Origins of Conservation 26

Premodern societies 26
First game and nature reserves 29
Foundations of forest conservation 30
Foundation of the "national park" 31
Intellectual foundations in the United States 34

Box 2.1 Success Story

Marine Protected Areas 34

Contemporary Conservation Biology 39

Formation of conservation biology as a discipline 41
The conservation biology explosion 41
Core principles and values of conservation 43

Box 2.2 Challenges & Opportunities

Two Views on the Functional Postulates (Core Principles) and Normative Postulates (Core Values) of Conservation Biology 45

Structured Decision Making 47

Box 2.3 Conservation in Practice
Structured Decision Making (SDM) 49

Biodiversity Concepts and Measurement 53

Hierarchical Levels of Biodiversity 54

Genetic Diversity 55

Sources of genetic variation 55 Measures of genetic diversity 57

Species Diversity 58

The species concept 59

Box 3.1 Conservation in Practice

Naming and Classifying Species 60

Measures of species diversity 62

Functional Traits and Phylogenetic Diversity 66

Community and Ecosystem Diversity 67

Trophic structure 68
Food web complexity 71
Species composition 73

■ Box 3.2 Success Story

Reintroduction of Beavers 74

Box 3.3 Conservation in Practice

Quantifying Biodiversity at Multiple Spatial Scales 76

The Multiple Scales of Biodiversity 77

.00	
A	
-	
-	-
	-
100	
_	_

Global Patterns and Drivers of Biodiversity 81

Biodiversity through Geologic Time 82

Formation of early life 82 Radiation events 82 Historical extinctions 84

Global Patterns of Biodiversity 87

How many species are there? 87

Box 4.1 Case in Point

Discovery of a New Way to Make Life 89

Box 4.2 Success Story

Rediscovery of an Extinct Species 90

Box 4.3 Case in Point

Discovery of the Human Biome 92
Realms, biomes, and ecoregions 93
The most diverse ecoregions 93
Biodiversity hotspots 96
Latitudinal gradients 97

Drivers of Biodiversity 99

Evolutionary drivers 99 Ecological drivers 105 Synopsis 110

Part II Importance of Biodiversity 115

The Many Values of Biodiversity 117

Values and Ethics 118
Types of Value Systems 119

Intrinsic values 120

Box 5.1 Success Story

The Public Makeover of Sharks 124

Box 5.2 Case in Point

Religion and Conservation 126

Instrumental values 126 Relational values 129

Ethical Worldviews 135

Anthropocentrism 135 Biocentrism 136 Ecocentrism 137

Biodiversity and Ecosystem Services 141

What Are Ecosystem Services? 143
History of Ecosystem Services 143

Ecosystem valuation 144
Biodiversity and ecosystem function 146
The Millennium Ecosystem Assessment 147

Types of Ecosystem Services 149

Supporting services 150 Provisioning services 153 Regulating services 157

Box 6.1 Success Story

How New York City Keeps Its Drinking Water Clean 159

Box 6.2 Case in Point

Wetland Loss and Hurricane Katrina 163

Cultural services 164

Alternative frameworks 168

Biotic Control of Ecosystem Services 169

Functional traits 170 Biodiversity 171

Box 6.3 Challenges & Opportunities

The Dilution Effect 175

Ecosystem Markets and Payments for Ecosystem Services 177

7 Ecological Economics 181

Principles of Ecological Economics 182 Decision-Making Analyses 185

Cost-effectiveness analysis 186 Cost-benefit analysis 187 Multicriteria decision analysis 190

Total Economic Value (TEV) Framework 192

Direct use value 193
Indirect use value 194
Option value 194
Existence value 194

Box 7.1 Case in Point

The Option Value of Biodiversity 195

Estimates of TEV 196

Methods of Valuing Ecosystem Services 198

Revealed preference methods 198 Real market techniques 199

Box 7.2 Conservation in Practice

An Example of the Market Pricing Method: Fisheries and Pollution 201

Surrogate market techniques 203 Cost-based techniques 204 Stated preference methods 206

Box 7.3 Success Story

Contingent Valuation Helps Reduce Human-Wildlife Conflict 208

Benefits transfer method 209

One Final Comment 209

Box 7.4 Challenges & Opportunities

Taking Anthropocentrism to the Extreme 210

Part III Threats to Biodiversity 213

Extinction 215

Global Patterns of Endangerment 216

The IUCN Red List 216

Box 8.1 Conservation in Practice

The IUCN Red List 217

Estimates of global extinction 221

Box 8.2 Challenges & Opportunities

Are We Entering the Sixth Mass Extinction? 224

Drivers of Extinction 226

Habitat loss 226
Overexploitation 227
Invasive alien species 227
Climate change 228
Most threatening factors 228

Local Changes in Biodiversity 230

Species-area relationships 230 Empirical measures 233 Better monitoring and assessment programs 236

Box 8.3 Success Stories

Citizen Science and Biodiversity Monitoring 239

Controls of Extinction Risk 240

Demographic parameters 240

Box 8.4 Case in Point

Why Are Frogs and Toads Croaking? 241

Ecological controls 242

Life-history traits 243

Stochastic processes 245

Habitat Loss, Fragmentation, and Degradation 249

Habitat Loss 250

Primary drivers of habitat loss 251

Box 9.1 Challenges & Opportunities

Land Sharing versus Land Sparing 254

Box 9.2 Success Story

The Rise, Fall, and Resurrection of Detroit 257 Habitat loss by biome 260

Box 9.3 Case in Point

The Unsustainable Use of Palm Oil 263

Future development threats 267

Habitat Fragmentation 269

Biological consequences of fragmentation 270 Species-specific responses to fragmentation 276

Habitat Degradation 277

Pollution 277

Desertification 283

Erosion and sedimentation 284

Metapopulations and Landscape Mosaics 285

The "classic" metapopulation model 286 Source-sink dynamics 287 Conservation of metapopulations 288

Box 9.4 Conservation in Practice

The Mainland-Island Metapopulation Model 289

10 Overexploitation 293

History of Overexploitation 294
Psychology of Overexploitation 297
Types of Overexploitation 299

Commercial exploitation 299

Box 10.1 Challenges & Opportunities
No Fish Left, or Let Us Eat Fish? 303

Box 10.2 Conservation in Practice

CITES: The Convention on International Trade in Endangered Species of Wild Fauna and Flora 306 Subsistence overexploitation 314 Recreational overexploitation 317

Box 10.3 Success Story

The Taimen Conservation Project 322

Theory of Sustainable Harvesting 322

Sustainable yield 323
Fixed quota (Q) harvesting 324
Fixed effort (proportional) harvesting 325
Limitations of MSY models 326

Invasive Alien Species 329

Overview of the Problem 330

The Population Biology of IAS 333

Introduction of alien species 334
Establishment of alien species 338
Spread of invasive alien species 341

Box 11.1 Conservation in Practice

Predicting an Invasive Alien Species Wave Front 342

Impacts of Invasive Alien Species 343

Impacts on biodiversity 343
Impacts on ecosystems 348

Economic impacts 349
Positive values of IAS 351

Box 11.2 Challenges & Opportunities

Should Species Be Judged by Their Origin, or by What They Do? 353

Management and Control 354

Box 11.3 Success Story

To Catch a Goat 355

Risk assessment 356

Risk management 361

12

Climate Change 369

Anthropogenic Climate Change 370
Predicted Response to Climate Change 374

Methods and models 375 Current forecasts 378

Box 12.1 Conservation in Practice

Toward Mechanistic Climate Envelope Models 378

Documented Responses to Climate Change 382

Population decay and local extirpation 382

Meet the First Species to Go Extinct Because of

Box 12.2 Case in Point

Anthropogenic Climate Change 383

Geographic range shifts 384

Altered phenologies 386

Biome regime shifts and alternative states 388

Change in ecosystem services 389

Managing Effects of Climate Change on Biodiversity 392

Establishing refugia and safe havens 393 Optimizing migration pathways 395 Building evolutionary resilience 396

Box 12.3 Challenges & Opportunities

Assisted Colonization: A Key Tool for Conservation, or Pandora's Box? 397

Using biodiversity for climate mitigation 398

Developing green infrastructure 398

Box 12.4 Success Story

China's Sponge City Program: Using Green Infrastructure to Mitigate Natural Disasters 400

Part IV Approaches to Conservation 403

		h
-	_	Į
-		1
1.0		y

Species-Level Conservation 405

Box 13.1 Success Story

Record-Breaking Recovery: Island Foxes of California 406

Goals of Species-Level Conservation 408

Challenges to Conserving

Small Populations 409

Demographic stochasticity 410 Environmental stochasticity 411 Loss of genetic variability 413

Effective Population Size 415

Determining effective population size 415 Unequal sex ratio 416 Variation in reproductive output 417 Population fluctuations and bottlenecks 417

Extinction Vortices 420

Estimating Population Size 421

Census 421

Box 13.2 Conservation in Practice

Estimating Animal Density: The Distance Sampling Approach 423

Capture-mark-recapture techniques 424

Box 13.3 Case in Point

Detector Dogs Support Research and Conservation Efforts 425

Models of Population Size 426

Geometric growth model 427 Exponential growth model 429 Logistic growth model 429 Age- and stage-based models 430 Stochastic models 433

Predicting Population Persistence 434

Minimum population size 434 Population viability analysis 436

Conservation Trade-Offs 440

14

Community and Ecosystem Conservation 445

Classification of Protected Areas 446

Strict nature reserves and wilderness areas
(Category I) 446
National parks (Category II) 448
Natural monuments (Category III) 448
Habitat/species management area
(Category IV) 448
Protected landscape/seascape
(Category V) 448

Managed resource protected area (Category VI) 449

Global Status of Protected Areas 449

Approaches for Choosing Protected Areas 453

Hotspots of biodiversity 453 Ecoregions 455

Box 14.1 Case in Point

Conserving Half: A Bold Agenda for Conservation 457
Political and economic boundaries 457
Ecosystem services 458
Areas of cultural importance 459

Effectiveness of Protected Areas 4

Terrestrial protected areas 461 Marine protected areas 463

Box 14.2 Success Story

Innovative Partnerships Protect One of Earth's
Last Remaining Marine Wilderness Areas 464

Impacts on Human Well-Being 466

Predictors of Success 469

Effective management 469
Stakeholder and community involvement 471
Integrated social development and conservation
goals 472

Box 14.3 Challenges & Opportunities

Fences and Fines ... or ... Integrated Conservation and Development? 474

100	SEC.
	Section 1
	-
THE R. LEWIS CO.	

Landscape-Scale Conservation 477

Creating Networks of Protected Areas 479

Establishing new protected areas 479 Criteria used to select and prioritize new protected areas 481

Box 15.1 Success Story

Indigenous Protected and Conserved Areas: The Right to Decide 482

Tools used to optimize selection of protected areas 487

Box 15.2 Conservation in Practice

Decision-Making Algorithms 488

Connecting Individual Protected Areas into Networks 493

Incorporating unprotected areas into conservation plans 497

Conservation opportunities in urban habitat 499

Conservation opportunities in agricultural habitat 502

Conservation opportunities in mixed-use habitat 504

Managing the Conservation Landscape 506

Monitoring 506 Modeling 510

Ecosystem-based management 511

Landscape-Scale Challenges 515

BOX 15.3 Case in Point

Community-Based Natural Resource Management 516

Ex Situ Conservation 521

Box 16.1 Case in Point

A Comprehensive Conservation Plan Saved the Giant Panda 523

Ex Situ Conservation Facilities 524

Zoos and aquariums 524 Botanical gardens 531 Gene banks and seed banks 534

Contributions to In Situ Conservation 538

Captive-breeding programs 538

Box 16.2 Challenges & Opportunities

Resurrection Science: Should Extinct Species Be Brought Back to Life? 541

Box 16.3 Conservation in Practice

Measuring Inbreeding and Outbreeding 543 Reintroduction and reinforcement 544

Box 16.4 Success Story

Reintroduction Programs That Saved Species from Extinction 546 Public education and engagement 549

Final Thoughts on Ex Situ Conservation 551

Conservation and Sustainable Development

What Is Sustainable Development? 556 International Efforts to Achieve Sustainable Development 558

The United Nations 558 International conventions 560

Funding for Sustainable Development 565

The World Bank 565 Global Environment Facility 567 Individual governments 568 Non-governmental organizations 570

Box 17.1 Challenges & Opportunities China's Belt and Road Initiative 570

Box 17.2 Success Story

Snow Leopard Enterprises 572

Examples of Sustainable Development Projects 573

Ecotourism and biodiversity 573 Illegal wildlife trade 574

Box 17.3 Case in Point

Should the Ban on Elephant Ivory Trade Be Lifted? 575 Fisheries 576

Climate change 577

The Future Success of Sustainable Development 578

Box 17.4 Conservation in Practice The Social Progress Index 582

Concluding Remarks 583

Glossary G-1 References R-1 Index I-1