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Local Divergences for Atanassov Intuitionistic
Fuzzy Sets

Ignacio Montes, Vladimir Janiš, Nikhil R. Pal, and Susana Montes

Abstract—The comparison of Atanassov intuitionistic fuzzy sets
(AIF-sets) is a topic that has been widely studied due to its several
applications in image segmentation or decision making, among
other fields. Divergences for AIF-sets (AIF-divergences) were in-
troduced as an adequate measure of comparison for AIF-sets.
This study investigates a family of AIF-divergences that satisfies
a local property. Such a property allows us to compute the di-
vergence between AIF-sets pointwise. A characterization of those
AIF-divergences satisfying the local property is provided. Several
interesting properties of local divergence are also discussed. Some
applications of these AIF-divergences in pattern recognition and
decision making illustrate their utility.

Index Terms—Atanassov intuitionistic fuzzy sets (AIF-sets), de-
cision making, divergences, local property, pattern recognition.

I. INTRODUCTION

A TANASSOV intuitionistic fuzzy set theory was introduced
by Atanassov [1] as an extension of fuzzy set theory [33]

and as an alternative to model situations in which fuzzy sets
do not provide all the available information. While fuzzy sets
just allow a membership degree, Atanassov intuitionistic fuzzy
sets (AIF-sets) allow both a membership and nonmembership
degrees [5]. AIF-sets have been proved to be a very powerful
tool to model different real problems.

The comparison of objects described by fuzzy sets or any of
their extension is a usual topic of research due to its applica-
tions in several areas, such as image segmentation [21], decision
making [17], [32], or pattern recognition [16], [19].

Although the measures of comparison of fuzzy sets have been
widely studied and several theoretical studies can be found in
the literature [6], [12], the comparison of AIF-sets has not been
studied so much. For this reason, in previous works [24], [26],
we made an extensive study of different measures of comparison
of AIF-sets, like distances and dissimilarities. We showed that
dissimilarities could produce some counterintuitive measures
that are not useful in applications, and for this reason, we in-
troduced a class of divergences for AIF-sets (AIF-divergences),
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which is an extension of the divergences for the comparison
of fuzzy sets [23]. AIF-divergences impose stronger conditions
than dissimilarities, and for this reason, they avoid those coun-
terintuitive situations.

In this study, we investigate a particular family of AIF-
divergences that possess very interesting properties. This is
the family of AIF-divergences that satisfies a local prop-
erty that allows computation of AIF-divergence pointwise. We
present a characterization and several properties of local AIF-
divergences. In [26], we gave a method for building fuzzy diver-
gences from AIF-divergences and, conversely, AIF-divergences
from fuzzy divergences. Since local AIF-divergences can be
seen as an extension of local fuzzy divergences [23], we inves-
tigate conditions under which such methods preserve locality.
Local AIF-divergences are interesting not only from a theoreti-
cal, but from an applied point of view as well. We illustrate this
fact showing how they could be applied in two diverse fields:
pattern recognition and decision making. A preliminary version
of some results of this study was presented in [25].

This paper is organized as follows. After this introduction,
we provide an overview on the theory of AIF-sets, and we
present AIF-divergences as measures of comparison of AIF-sets.
Then, in Section III, we introduce the local property of AIF-
divergences. For this, we first consider the local properties of
fuzzy divergences, and then, we extend it to AIF-divergences.
Then, we prove the characterization of local AIF-divergences,
and we show that some of the usual AIF-divergences satisfy this
local property. Section IV is devoted to investigating some of
the properties of local AIF-divergences. Section V shows how to
build local fuzzy divergences from local AIF-divergences and,
conversely, local AIF-divergences from local fuzzy divergences.
Then, some applications of local AIF-divergences in decision
making and pattern recognition are discussed in Section VI, and
we conclude the work with some comments and possible future
lines of research in Section VII.

II. ATANASSOV INTUITIONISTIC FUZZY SETS

AIF-sets were introduced by Atanassov [1] as an extension of
fuzzy sets [33]. A fuzzy set A is characterized by its member-
ship function, such that A(x) represents the degree to which x
satisfies the property described by A. Atanassov realized that in
some situations, fuzzy sets do not model adequately the avail-
able information. Therefore, he introduced an extension of fuzzy
sets, called AIF-sets, that allowed to take into account not only
the degree to which any element belongs to the set but also the
degree to which it does not belong to the set. Formally, an AIF-
set is defined by means of two functions μA , νA : X → [0, 1],
named membership and nonmembership functions, satisfying
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the constraint μA (x) + νA (x) ≤ 1. This way, an AIF-set is de-
fined by A = {(x, μA (x), νA (x)) : x ∈ X}.

If A is a fuzzy set, the nonmembership function coincides
with one minus the membership function. However, for proper
AIF-sets, the hesitation index, which is defined by πA (x) =
1 − μA (x) − νA (x), is nonzero, and it expresses the lack of
knowledge on the membership of x to A. This index shows the
usefulness of AIF-sets with respect to fuzzy sets: Fuzzy sets
does not take into account the lack of information given by the
hesitation index.

We denote by FS(X) the set of all fuzzy sets on X and by
AIFS(X) the set of all AIF-sets on X . Trivially, FS(X) ⊂
AIFS(X).

Usual operations on fuzzy sets are also defined for AIF-sets
[1]–[4].

1) Union of A and B: A ∪ B = {(x, μA∪B (x), νA∪B (x)) :
x ∈ X}, where μA∪B (x) = max{μA (x), μB (x)} and
νA∪B (x) = min{νA (x), νB (x)}.

2) Intersection of A and B: A ∩ B = {(x, μA∩B (x), νA∩B

(x)) : x ∈ X}, where μA∩B (x) = min{μA (x), μB (x)}
and νA∩B (x) = max{νA (x), νB (x)}.

3) Complement of A: Ac = {(x, νA (x), μA (x)) : x ∈ X}.
4) A is a subset of B (denoted by A ⊆ B) if and only if for

every x ∈ X , it holds that μA (x) ≤ μB (x) and νA (x) ≥
νB (x).

We have presented the original definitions given by Atanassov
[1]–[4], since they are the most commonly used in the litera-
ture. However, there are generalizations based on t-norms and
t-conorms (see, for example, [13]).

The comparison of fuzzy sets is an interesting topic of re-
search [6], and several measures have been proposed in the
past, like distances, dissimilarities [20], and divergences [23].
With the increasing popularity of the theory of AIF-sets, these
measures were generalized to the comparison of AIF-sets. In a
previous paper (see [26]), we have discussed several measures
of comparison of AIF-sets that can be found in the literature.
Dissimilarities are one of such measures; they are functions
D : AIFS(X) × AIFS(X) → R satisfying the following ax-
ioms:

AIF-Diss.1: D(A,A) = 0 for every A ∈ AIFS(X).
AIF-Diss.2: D(A,B) = D(B,A) for every A,B ∈
AIFS(X).
AIF-Diss.3: For every A,B,C ∈ AIFS(X) such that A ⊆
B ⊆ C, it holds that D(A,C) ≥ max(D(A,B),D(B,C)).

Nevertheless, we have explained that such measures are not
adequate in some situations because they could generate coun-
terintuitive measures, as the next example shows.

Example 2.1 (see[26]): Consider a finite universe X =
{x1 , . . . , xn} and the function DC defined, for every A,B ∈
AIFS(X), by

DC(A,B) =
1
2n

n∑

i=1

|SA (xi) − SB(xi)| (1)

where SA (xi) = |μA (xi) − νA (xi)| and SB(xi) = |μB (xi) −
νB (xi)|, for i = 1, . . . , n. This measure was introduced by

Chen [10], [11], and it is a dissimilarity measure. However,
if μA (xi) = νA (xi) = 0 and μB (xi) = νB (xi) = 0.5 for every
i = 1, . . . , n, then DC(A,B) = 0. However, these two AIF-sets
are distinctly different.

In order to avoid these counterintuitive examples, we intro-
duced a new measure of comparison of AIF-sets that requires
stronger conditions.

Divergences are measures of comparison for AIF-sets that
model the following intuitive properties.

1) The divergence between two AIF-sets is nonnegative and
symmetric.

2) The divergence between an Atanassov intuitionistic fuzzy
set and itself must be zero.

3) The “more similar” two AIF-sets are, the lower is the
divergence between them.

More precisely, we have the following.
Definition 2.2 (see[26, Def. 3.1]): AIF-divergence is a func-

tion DAIF : AIFS(X) × AIFS(X) → R satisfying the fol-
lowing axioms:

AIF-Diss.1: DAIF(A,A) = 0 for every A ∈ AIFS(X).
AIF-Diss.2: DAIF(A,B) = DAIF(B,A) for every A,B ∈
AIFS(X).
AIF-Div.3: DAIF(A ∩ C,B ∩ C) ≤ DAIF(A,B) for every
A,B,C ∈ AIFS(X).
AIF-Div.4: DAIF(A ∪ C,B ∪ C) ≤ DAIF(A,B) for every
A,B,C ∈ AIFS(X).

Let us recall that the nonnegativity is not required in the
definition. Nevertheless, it can be derived from the other axioms
(see [26, Proposition 4.1]).

We have introduced AIF-divergences because dissimilari-
ties could generate counterintuitive measures of comparison
for AIF-sets. In fact, the next result establishes that every AIF-
divergence is a dissimilarity, and therefore, AIF-divergences are
more restrictive than dissimilarities since they require stronger
conditions. However, sometimes, it can be an advantage, since
the more restrictive the conditions are, the more “robust” the
measure is, in the sense that it is less likely to result in counter-
intuitive examples. In fact, the dissimilarity of Chen defined in
(1) is not an AIF-divergence.

Proposition 2.3 (see[26, Proposition 3.3]): Every AIF-
divergence is a dissimilarity, and the converse does not hold in
general.

Remark 2.4: If we restrict the AIF-divergence to the set of
all fuzzy sets on X , that is, when we consider the restriction
DAIF |F S (X ) : FS(X) × FS(X) → R, the map DAIF |F S (X )
is a usual divergence between fuzzy sets according to the defi-
nition proposed in [23].

III. LOCAL DIVERGENCES FOR ATANASSOV INTUITIONISTIC

FUZZY SETS

We have Already mentioned in the previous section that AIF-
divergences are adequate measures of comparison for AIF-
sets. In this section, we introduce a special family of AIF-
divergences, which satisfy a local property, that will be very
useful in several applications, as shall be shown in Section VI.
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We split this section in three parts: First, we introduce the notion
of locality for AIF-divergences and justify their use; second, we
characterize them, and then, we conclude the section showing
which of the usual measures of comparison of AIF-sets are local
AIF-divergence.

A. Local Divergences for Atanassov Intuitionistic Fuzzy Sets:
Definition and Justification

Consider a finite universe X = {x1 , . . . , xn} and an AIF-
divergence DAIF . If A and B are two AIF-sets, and we consider
xi ∈ X , applying axiom AIF-Div.4, we know that DAIF(A ∪
{xi}, B ∪ {xi}) ≤ DAIF(A,B). In addition, it seems quite
reasonable to assume that the difference between DAIF(A ∪
{xi}, B ∪ {xi}) and DAIF(A,B) relies on the ith component.
Thus, such a difference may only depend on μA (xi), νA (xi)
and μB (xi), νB (xi). When this happens, the AIF-divergence is
said to satisfy the local property.

Definition 3.1: Let DAIF be an AIF-divergence. It is called
local (or it is said to satisfy the local property) when for every
A,B ∈ AIFS(X) and every x ∈ X , it holds that

DAIF(A,B) − DAIF(A ∪ {x}, B ∪ {x}) =

hAIF(μA (x), νA (x), μB (x), νB (x)). (2)

This means that the change in the divergence only depends on
what has been changed. As we will see in the next section, it is
possible to provide a characterization of this kind of divergences
in terms of the map hAIF : [0, 1]4 → R.

Note that it is possible to find AIF-divergences that do not
satisfy such property, as the one defined by Li et al. [18]:

DO (A,B) =
1√
2n

(
n∑

i=1

(μA (xi) − μB (xi))2

+ (νA (xi) − νB (xi))2

) 1
2

. (3)

It is an AIF-divergence (see [26]), but it cannot be expressed as
in (2).

The question now is: Why do we study this family of AIF-
divergences? Are they really relevant only from the theoretical
point of view or they are important for applications also? We
now justify the main reasons for studying this family.

1) Pointwise comparisons: By definition, local AIF-
divergences are those AIF-divergences that allow us to
compare AIF-sets pointwise. This is quite relevant when
dealing with applications like image processing. In that
framework, sometimes, it is required to compare images
pixel by pixel, or in other words, pointwise.

2) Connection to restricted equivalence functions: In [8] and
[9], the notion of restricted equivalence functions was
introduced as an extension of Fodor and Roubens fuzzy
equivalences [14], and they were used to define similarity
measures between fuzzy sets. We shall see in the next
section that restricted equivalence functions can also be
used to define local AIF-divergences.

3) Computation complexity: Obviously, when the cardinality
of the referential set increases, the complexity of compu-
tation of any measure of comparison between AIF-sets
(local and nonlocal AIF-divergence measures, distances,
dissimilarities, etc.) also increases. However, the use of
local AIF-divergences can make that computation easier.
For example, after computing the difference between two
AIF-sets A and B by means of a local AIF-divergence,
if we need to compute the local AIF-divergence be-
tween A′ and B, where the membership and nonmem-
bership degrees of A′ coincide with those of A in all
but one of the elements, xi , then using the local prop-
erty, we can drastically simplify the computation. The
reason is that, according to (2), we only need to com-
pute the values: h(μA ′(xi), νA ′(xi), μB (xi), νB (xi)) and
h(μA (xi), νA (xi), μB (xi), νB (xi)). Obviously, this fact
reduces considerably the complexity of the problem.

B. Characterization of Local Divergences for Atanassov
Intuitionistic Fuzzy Sets

Now, we are going to provide a characterization of local AIF-
divergence in terms of the properties satisfied by the function
hAIF .

Theorem 3.2: A map DAIF : AIFS(X) × AIFS(X) →
R on a finite universe X = {x1 , . . . , xn} is a local AIF-
divergence if and only if there is a function hAIF : D2 → R,
where D denotes the set D = {(u, v) ∈ [0, 1]2 : u + v ≤ 1},
such that for every A,B ∈ AIFS(X), it holds that

DAIF(A,B) =
n∑

i=1

hAIF(μA (xi), νA (xi), μB (xi), νB (xi))

(4)
and hAIF satisfies the following properties:

AIF-loc.1: hAIF(u, v, u, v) = 0 for every (u, v) ∈ D.
AIF-loc.2: hAIF(u1 , u2 , v1 , v2) = hAIF(v1 , v2 , u1 , u2) for
every (u1 , u2), (v1 , v2) ∈ D.
AIF-loc.3: If (u1 , u2), (v1 , v2) ∈ D, w ∈ [0, 1] and u1 ≤ w
≤ v1 , it holds that hAIF(u1 , u2 , v1 , v2) ≥ hAIF(u1 , u2 ,
w, v2).
Moreover, if max{u2 , v2} + w ≤ 1, it holds that hAIF(u1 ,
u2 , v1 , v2) ≥ hAIF(w, u2 , v1 , v2).
AIF-loc.4: If (u1 , u2), (v1 , v2) ∈ D, w ∈ [0, 1] and u2 ≤ w
≤ v2 , it holds that hAIF(u1 , u2 , v1 , v2) ≥ hAIF(u1 , u2 ,
v1 , w).
Moreover, if max{u1 , v1} + w ≤ 1, it holds that hAIF(u1 ,
u2 , v1 , v2) ≥ hAIF(u1 , w, v1 , v2).
AIF-loc.5: If (u1 , u2), (v1 , v2) ∈ D and w ∈ [0, 1], then
hAIF(w, u2 , w, v2) ≤ hAIF(u1 , u2 , v1 , v2) if max{u2 , v2}
+ w ≤ 1 and hAIF(u1 , w, v1 , w) ≤ hAIF(u1 , u2 , v1 , v2) if
max{u1 , v1} + w ≤ 1.

Proof: Let us assume, first of all, that DAIF is a local AIF-
divergence and prove that DAIF(A,B) can be expressed as in
(4), where hAIF satisfies properties from AIF-loc.1 to AIF-loc.5.
In order to prove that, we apply recursively (2): DAIF(A,B) =
DAIF(A ∪ {x1}, B ∪ {x1}) + hAIF(μA (x1), νA (x1), μB (x1),
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νB (x1)) = DAIF(A ∪ {x1} ∪ {x2}, B ∪ {x1} ∪ {x2}) +∑2
i=1 hAIF(μA (xi), νA (xi), μB (xi), νB (xi)) = · · · = DAIF

(X,X) +
∑n

i=1 hAIF(μA (xi), νA (xi), μB (xi), νB (xi)).
Moreover, axiom AIF-Div.1 implies DAIF(X,X) = 0, and

consequently, DAIF(A,B) can be expressed as in (4).
Let us prove next that hAIF fulfills properties from AIF-loc.1

to AIF-loc.5.
1) AIF-loc.1: Take (u, v) ∈ D, and let us prove that hAIF

(u, v, u, v) = 0. For this, we define the AIF-set A by μA

(xi) = u and νA (xi) = v for every i = 1, . . . , n. Note
that A is in fact an AIF-set since μA (xi) + νA (xi)
= u + v ≤ 1 for every i = 1, . . . , n. Applying axiom
AIF-Diss.1, DAIF(A,A) = 0, and therefore, 0 = DAIF
(A,A) =

∑n
i=1 hAIF(μA (xi), νA (xi), μA (xi), νA (xi))

=
∑n

i=1hAIF(u, v, u, v)= nhAIF(u,v, u, v). Then, hAIF
(u, v, u, v) must be 0.

2) AIF-loc.2: Let (u1 , u2), (v1 , v2) be two elements in D.
Consider the AIF-sets A and B defined by μA (xi) = u1 ,
νA (xi) = u2 , μB (xi) = v1 , and νB (xi) = v2 for any
i = 1, . . . , n. Using axiom AIF-Diss.2 and (4), we obtain
the following: nhAIF(u1 , u2 , v1 , v2) =

∑n
i=1 hAIF(μA

(xi), νA (xi), μB (xi), νB (xi)) = DAIF(A,B) = DAIF
(B,A) =

∑n
i=1 hAIF(μB (xi), νB (xi), μA (xi), νA (xi))

= nhAIF(v1 , v2 , u1 , u2). Thus, hAIF(u1 , u2 , v1 , v2) =
hAIF(v1 , v2 , u1 , u2).

3) AIF-loc.3: Consider (u1 , u2), (v1 , v2) ∈ D and w ∈ [0, 1]
such that u1 ≤ w ≤ v1 , and let us define the AIF-sets A
and B by μA (xi) = u1 , νA (xi) = u2 , μB (xi) = v1 , and
νB (xi) = v2 , for every i = 1, . . . , n. Consider two cases.

a) On one hand, we are going to prove that
hAIF(u1 , u2 , v1 , v2) ≥ hAIF(u1 , u2 , w, v2). To see
this, consider the AIF-set C defined by μC (xi) = w
and νC (xi) = 0 for i = 1, . . . , n. Then, the AIF-
sets A ∩ C and B ∩ C are given by A ∩ C = A and
B ∩ C = {(xi, μC (xi), νB (xi)) : i = 1, . . . , n}.
Using axiom AIF-Div.3, we see that DAIF(A,B)
≥ DAIF(A ∩ C,B ∩ C) = DAIF(A,B ∩ C), and
then, (4) implies that nhAIF(u1 , u2 , v1 , v2) =
DAIF(A,B) ≥ DAIF(A ∩ C,B ∩ C) = nhAIF
(u1 , u2 , w, v2). Hence, hAIF(u1 , u2 , v1 , v2) ≥
hAIF(u1 , u2 , w, v2).

b) Now, we prove that hAIF(u1 , u2 , v1 , v2) ≥ hAIF
(w, u2 , v1 , v2) holds when max(u2 + w, v2 + w)
≤ 1. Consider the AIF-set C defined by μC (xi) =
w and νC (xi) = max(u2 , v2), for i = 1, . . . , n.
Note that C is an AIF-set because μC (xi) +
νC (xi) = max(u2 + w, v2 + w) ≤ 1, for i = 1,
. . . , n. Using axiom AIF-Div.4, we deduce that
DAIF(A,B) ≥ DAIF(A ∪ C,B ∪ C). Moreover,
the AIF-sets A ∪ C and B ∪ C are given by
A ∪ C = {(xi, μC (xi), νA (xi) : i = 1, . . . , n} and
B ∪ C = B.
Then, DAIF(A,B) ≥ DAIF(A ∪ C,B). This, to-
gether with (4), implies that nhAIF(u1 , u2 , v1 , v2)
= DAIF(A,B) ≥ DAIF(A ∪ C,B ∪ C) = nhAIF
(w, u2 , v1 , v2). Hence, hAIF(u1 , u2 , v1 , v2) ≥
hAIF(w, u2 , v1 , v2).

4) AIF-loc.4: The proof is analogous to that of AIF-loc.3.
5) AIF-loc.5: Consider (u1 , u2), (v1 , v2) ∈ D and w ∈

[0, 1].
Let us assume that max(u2 , v2) + w ≤ 1, and we
consider the AIF-sets A, B, C, and D given by A =
{(x, u1 , u2) : x ∈ X}, B = {(x, v1 , v2) : x ∈ X}, C =
{(x,w, u2) : x ∈ X} and D = {(x,w, v2) : x ∈ X}.
Using [26, Proposition 4.5], it follows that DAIF
(A,B) ≥ DAIF(C,D), and applying (4), we deduce
that nhAIF(u1 , u2 , v1 , v2) = DAIF(A,B) ≥ DAIF(C,
D) = nhAIF(w, u2 , w, v2). Thus, hAIF(u1 , u2 , v1 , v2)
≥ hAIF(w, u2 , w, v2).
If we assume now that max(u1 , v1) + w ≤ 1, and we
consider the AIF-sets: A = {(x, u1 , u2) : x ∈ X}, B =
{(x, v1 , v2) : x ∈ X}, C = {(x, u1 , w) : x ∈ X} and
D = {(x, v1 , w) : x ∈ X}. Applying [26, Proposi-
tion 4.5], we know that DAIF(A,B) ≥ DAIF(C,D).
Using (4), we obtain that nhAIF(u1 , u2 , v1 , v2) =
DAIF(A,B) ≥ DAIF(C, D) = nhAIF(u1 , w, v1 , w).
Thus, hAIF(u1 , u2 , v1 , v2) ≥ hAIF(u1 , w, v1 , w).

Summarizing, we have proven that if DAIF is an AIF-
divergence satisfying the local property, then DAIF(A,B) can
be expressed as in (4), where the function hAIF satisfies AIF-
loc.1–AIF-loc.5.

Let us prove the converse. That is, we are going to prove that if
a function DAIF is defined by (4), where hAIF fulfills properties
AIF-loc.1–AIF-loc.5, then DAIF is a local AIF-divergence.

First of all, let us prove that DAIF is an AIF-divergence, i.e.,
that it satisfies axioms AIF-Diss.1, AIF-Diss.2, AIF-Div.3, and
AIF-Div.4.

1) AIF-Diss.1: Let A be an AIF-set. Then, DAIF(A,A)
= 0 because DAIF(A,A) is equal to

∑n
i=1 hAIF

(μA (xi), νA (xi), μA (xi), νA (xi)) = 0, since AIF-loc.1
implies that hAIF(u, v, u, v) = 0 for every (u, v) ∈ D,
and in particular (μA (xi), νA (xi)) ∈ D for i = 1, . . . , n.

2) AIF-Diss.2: Let A and B be two AIF-sets, and let us
prove that DAIF(A,B) = DAIF(B,A). Applying AIF-
loc.2, for every (u1 , u2), (v1 , v2) ∈ D, it holds that

hAIF(u1 , u2 , v1 , v2) = hAIF(v1 , v2 , u1 , u2).

Hence, DAIF(A,B) = DAIF(B,A).
3) AIF-Div.3 and AIF-Div.4: Let A, B, and C be three

AIF-sets, and let us show that DAIF(A,B) ≥ max(DAIF
(A ∪ C,B ∪ C),DAIF(A ∩ C,B ∩ C)). Consider the
following subsets of X: P1 = {x ∈ X : μA (x), μB (x) ≤
μC (x)}, P2 = {x ∈ X : μA (x) ≤ μC (x) < μB (x)}, P3
= {x ∈ X : μB (x) ≤ μC (x) < μA (x)}, P4 = {x ∈ X :
μC (x) < μA (x), μB (x)}, Q1 = {x ∈ X : νA (x), νB (x)
≤ νC (x)}, Q2 = {x ∈ X : νA (x) ≤ νC (x) < νB (x)},
Q3 = {x ∈ X : νB (x) ≤ νC (x) < νA (x)}, and Q4 =
{x ∈ X : νC (x) < νA (x), νB (x)}.
Thus, X =

⋃4
i=1

⋃4
j=1(Pi ∩ Qj ). Using properties from

AIF-loc.1 to AIF-loc.5, it can be easily proven that, for
every i, j ∈ {1, . . . , 4} and x ∈ Pi ∩ Qj , it holds that
hAIF(μA∪C (x), νA∪C (x), μB∪C (x), νB∪C ) and hAIF
(μA∩C (x), νA∩C (x), μB∩C (x), νB∩C ) are lower than
hAIF(μA (x), νA (x), μB (x), νB (x)). Thus, DAIF satisfies



364 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 2, APRIL 2016

both AIF-Div.3 and AIF-Div.4, and therefore, it is an AIF-
divergence.

It only remains to show that DAIF is local, but this holds cx
trivially, taking into account that, for j = 1, . . . , n, DAIF(A,B)
− DAIF(A ∪ {xj}, B ∪ {xj}) =

∑n
i=1 hAIF(μA (xi), νA (xi),

μB (xi), νB (xi))−
∑

i �=j hAIF(μA (xi), νA (xi), μB (xi), νB (xi))
− hAIF(1, 1, 0, 0) = hAIF(μA (xj ), νA (xj ), μB (xj ), νB (xj )).
We conclude that DAIF is a local AIF-divergence. �

This theorem allows us to characterize local AIF-divergences
by means of a function hAIF that satisfies conditions from AIF-
loc.1 to AIF-loc.5. Thus, given a function D : AIFS(X) ×
AIFS(X) → R, in order to check whether it is a local AIF-
divergence or not, it is enough to prove that it can be expressed as
in (4), and its associated function hAIF satisfies such conditions.

Remark 3.3: In the particular case, hAIF only depends on
the values of the first and third components; we have a local
divergence between fuzzy sets, since it is characterized (see [23,
Proposition 3.4]) by a function h : [0, 1] × [0, 1] → R such that
D(A,B) =

∑n
i=1 h(A(x), B(x)), and it satisfies the following

properties:
loc.1: h(u, u) = 0 for every u ∈ [0, 1].
loc.2: h(u, v) = h(v, u) for every (u, v) ∈ [0, 1]2 .
loc.3: h(u,w) ≥ max(h(u, v), h(v, w)) for every u, v, w ∈
[0, 1] such that u < v < w.

C. Examples of Local Divergences for Atanassov Intuitionistic
Fuzzy Sets

Once we have characterized local AIF-divergences in terms
of the function hAIF , we are going to see several examples. We
have already seen one example of an AIF-divergence that is not
local: Li’s AIF-divergence defined in (3).

The two main AIF-divergences we can find in the literature
are Hamming and Hausdorff distances, defined by lIFS(A,B) =∑n

i=1 |μA (xi) − μB (xi)| + |νA (xi) − νB (xi)| + |πA (xi) −
πB (xi)| and dH(A,B) =

∑n
i=1 max(|μA (xi) − μB (xi)|, |νA

(xi) − νB (xi)|).
We have already proved (see [26]) that both measures are

AIF-divergences. In fact, if we consider the functions hlIF S

(u1 , u2 , v1 , v2) = |u1 − v1 | + |u2 − v2 | + |u1 + u2− v1− v2 |,
and hdH (u1 , u2 , v1 , v2) = max(|u1 − v1 |, |u2 − v2 |), both
Hamming and Hausdorff distances can be expressed, respec-
tively, by

lIFS(A,B) =
n∑

i=1

hlIF S (μA (xi), μB (xi), νA (xi), νB (xi))

(5)

dH(A,B) =
n∑

i=1

hdH (μA (xi), μB (xi), νA (xi), νB (xi)).

(6)

Thus, both Hamming and Hausdorff distances are local AIF-
divergences.

A recent paper of Szmidt and Kacprzyk [30] presents a survey
of several measures of comparison of AIF-sets. In [26], we have
investigated the cases that are AIF-divergences. Now, we are
going to see which of them satisfy the local property.

We start considering the AIF-divergences defined by Hong
and Kim [15]:

DH K (A,B) =
1
2n

n∑

i=1

|μA (xi) − μB (xi)|

+ |νA (xi) − νB (xi)| (7)

DL (A,B) =
1
4n

n∑

i=1

|SA (xi) − SB (xi)| + |μA (xi)

− μB (xi)| + |νA (xi) − νB (xi)| (8)

where SA (xi) = |μA (xi) − νA (xi)| and SB (xi) = |μB (xi) −
νB (xi)|. Both AIF-divergences are local, and their associated
functions hH K and hL are, respectively, given by hH K (u1 , u2 ,
v1 , v2) = 1

2n (|u1 − v1 | + |u2 − v2 |) and hL (u1 , u2 , v1 , v2)
= 1

4n (|u1 − u2 − v1 + v2 | + |u1 − v1 | + |u2 − v2 |).
The AIF-divergences of Mitchell [22] (Dp

H B ) and Liang and
Shi (Dp

e and Dp
h ) are defined by Dp

H B (A,B) = 1
p
√

n
((

∑n
i=1

|μA (xi) − μB (xi)|p)
1
p + (

∑n
i=1 |νA (xi) − νB (xi)|p)

1
p ), Dp

e

(A,B) = 1
2
√

n
(
∑n

i=1 (|μA (xi) − μB (xi)| + |νA (xi) − νB

(xi)|)p)
1
p , and Dp

h(A,B) = 1
p
√

3n

( ∑n
i=1 |μA (xi) − μB (xi)|

+ |νA (xi) − νB (xi)| + |μA (xi)− μB (xi)− νA (xi)+ νB (xi)|

+ |μA (xi) − μB (xi) + νA (xi) − νB (xi)|
) 1

p

.

These AIF-divergences are not local except for the trivial
case with p = 1. In fact, for p = 1, D1

H B coincides with the
AIF-divergence DH K given by Hong and Kim, which we have
already seen that satisfies the local property.

IV. PROPERTIES OF THE LOCAL DIVERGENCES FOR

ATANASSOV INTUITIONISTIC FUZZY SETS

We have introduced local AIF-divergences as particular cases
of AIF-divergences that can be computed pointwise. We devote
this section to show several interesting properties satisfied by
local AIF-divergences.

First of all, let us focus on a property that was introduced in
[26] that some AIF-divergences may satisfy:

AIF-Div.5: DAIF(A,B) = DAIF(Ac,Bc) for every A,B ∈
AIFS(X).

This property becomes important since, if it is satisfied, the
axioms AIF-Div.3 and AIF-Div.4 are equivalent.

Proposition 4.1 (see[26, Proposition 4.4]): Let DAIF :
AIFS(X) × AIFS(X) → R be a function satisfying AIF-
Diss.1, AIF-Diss.2, and AIF-Div.5. Then, it satisfies AIF-Div.3
if and only if it satisfies AIF-Div.4.

Consequently, if a function DAIF satisfies AIF-Diss.1, AIF-
Dist.2, and AIF-Div.5, in order to prove that it is an AIF-
divergence, it is enough to check whether it satisfies either
AIF-Div.3 or AIF-Div.4.

In case of local AIF-divergences, the condition AIF-Div.5 can
be written in terms of the function hAIF .

Proposition 4.2: Let DAIF be a local AIF-divergence. Then,
DAIF satisfies property AIF-Div.5 if and only if

hAIF(u1 , u2 , v1 , v2) = hAIF(u2 , u1 , v2 , v1) (9)
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for every (u1 , u2), (v1 , v2) ∈ D = {(u, v) ∈ [0, 1]2 : u + v ≤
1}.

Proof: Assume that DAIF satisfies axiom AIF-Div.5,
i.e., DAIF(A,B) = DAIF(B,A) for every A,B ∈ AIFS(X).
Consider (u1 , u2), (v1 , v2) ∈ D and define the AIF-sets A and B
by A = {(x, u1 , u2) : x ∈ X} and B = {(x, v1 , v2) : x ∈ X}.

Applying AIF-Div.5, it holds that DAIF(A,B) = DAIF
(Ac,Bc). Using (4), we find that nhAIF(u1 , u2 , v1 , v2) =
DAIF(A,B) = DAIF(Ac,Bc) = nhAIF(u2 , u1 , v2 , v1).

Thus, hAIF(u1 , u2 , v1 , v2) = hAIF(u2 , u1 , v2 , v1).
Conversely, assume that hAIF(u1 , u2 , v1 , v2) = hAIF(u2 , u1 ,

v2 , v1) for every elements (u1 , u2) and (v1 , v2) in D. Let A and
B be two AIF-sets. Then, for every i = 1, . . . , n, it holds
that hAIF(μA (xi), νA (xi), μB (xi), νB (xi)) = hAIF(νA (xi),
μA (xi), νB (xi), μB (xi)), and therefore, DAIF(A,B) = DAIF
(Ac,Bc). �

According to Propositions 4.1 and 4.2, in order to prove that a
function hAIF satisfying (9) defines a local AIF-divergence, it is
enough to prove that it satisfies AIF-loc.1, AIF-loc.2, AIF-loc.5
and either AIF-loc.3 or AIF-loc.4, because both are equivalent.

In Section III-C, we have shown that both Hamming and
Hausdorff distances are local. In fact, both satisfy the axiom
AIF-Div.5 (see [26]), but we could also prove it by means of the
previous result, since functions hlIF S and hdH defined in (5) and
(6) satisfy (9).

Our next result is an extension of [23, Propositions 3.10 and
3.11] to AIF-sets, and it ensures that the divergence takes the
maximum value when the AIF-sets are crisp.

Proposition 4.3: Consider a local AIF-divergence DAIF and
any two crisp sets V and Z. Then, DAIF(V, V c) = DAIF(Z,
Zc). In addition, if A,B ∈ AIFS(X), then DAIF(A,B) ≤
DAIF(Z,Zc).

Proof: Note that hAIF(1, 0, 0, 1) = hAIF(0, 1, 1, 0), and
therefore, DAIF(V, V c) = nhAIF(1, 0, 0, 1) = DAIF(Z,Zc).

Now, taking into account that hAIF(1, 0, 0, 1) ≥ hAIF(u1 ,
u2 , v1 , v2), since hAIF(1, 0, 0, 1) ≥ hAIF(u1 , 0, 0, 1) ≥ hAIF
(u1 , u2 , 0, 1) ≥ hAIF(u1 , u2 , 0, v2) ≥ hAIF(u1 , u2 , v1 , v2), it
holds that DAIF(A,B) =

∑n
i=1 hAIF(μA (xi), νA (xi), μB (xi),

νB (xi)) ≤
∑n

i=1 hAIF(1, 0, 0, 1) = DAIF(Z,Zc). �
In [26, Proposition 4.14], we introduced a method that is use-

ful to generate AIF-divergences from other AIF-divergences. It
is based on a nondecreasing function φ satisfying φ(0) = 0. In
such a case, if DAIF is an AIF-divergence, the function Dφ

AIF

defined by Dφ
AIF(A,B) = φ(DAIF(A,B)) is also an AIF-

divergence. In this case, although DAIF is a local AIF-
divergence, Dφ

AIF may not be local. For instance, if φ is not a
linear function, Dφ

AIF is not local. Nevertheless, it is possible to
prove a similar result.

Proposition 4.4: Let DAIF be a local AIF-divergence, and
let φ : [0,∞) → [0,∞) be a nondecreasing function satisfy-
ing φ(0) = 0. In such a case, the function Dφ

AIF , defined by
Dφ

AIF(A,B)=
∑n

i=1φ(hAIF(μA (xi),νA (xi),μB (xi), νB (xi))),
is a local AIF-divergence.

Proof: On one hand, since φ(0) = 0, it holds that φ(hAIF(u,
v, u, v))=φ(0)=0 for any (u, v)∈D. Then, φ◦hAIF satisfies
AIF-loc.1. Furthermore, since hAIF satisfies AIF-loc.2: φ ◦

hAIF(u1 , v1 , u2 , v2) = φ(hAIF(u1 , v1 , u2 , v2)) = φ(hAIF(v1 ,
u1 , v2 , u2)) = φ ◦ hAIF(v1 , u1 , v2 , u2).

Then, φ ◦ hAIF also satisfies AIF-loc.2. To prove that it also
fulfills AIF-loc.3–AIF-loc.5, it is enough to note that hAIF does
satisfy them and that φ is a nondecreasing function. Then, using
Theorem 3.2, Dφ

AIF a local AIF-divergence. �
This result shows that if hAIF : D2 → R is a function satis-

fying properties AIF-loc.1–AIF-loc.5, and ϕ is a nondecreasing
function from [0,∞) to [0,∞) such that ϕ(0) = 0, the composi-
tion ϕ ◦ hAIF also satisfies properties AIF-loc.1–AIF-loc.5, and
therefore, it defines a local AIF-divergence.

The next result relates local AIF-divergences and real dis-
tances.

Proposition 4.5: Consider a distance d : R×R → R satis-
fying

u < v < w ⇒ max(d(u, v), d(v, w)) ≤ d(u,w). (10)

Then, for every nondecreasing function φ : [0,∞) × [0,∞) →
[0,∞) such that φ(0, 0) = 0, the function DAIF : AIFS(X) ×
AIFS(X) → R defined by the following equation is a local
AIF-divergence:

DAIF(A,B) =
n∑

i=1

φ(d(μA (xi), μB (xi)), d(νA (xi), νB (xi))).

(11)
Proof: Using Theorem 3.2, it is enough to prove that the

function hAIF(u1 , u2 , v1 , v2) = φ(d(u1 , v1), d(u2 , v2)) satis-
fies properties from AIF-loc.1 to AIF-loc.5.

AIF-loc.1: Since d is a distance, d(x, x) = 0. Then, for any
(x, y) ∈ D hAIF(x, y, x, y) = φ(d(x, x), d(y, y)) = φ(0, 0) =
0.

AIF-loc.2: Since any distance is symmetric, for any (x1 ,
x2), (y1 , y2) ∈ D, it holds that hAIF(x1 , x2 , y1 , y2) = φ(d(x1 ,
y1), d(x2 , y2)) = φ(d(y1 , x1), d(y2 , x2)) = hAIF(y1 , y2 , x1 ,
x2).

AIF-loc.3: Consider (x1 , x2), (y1 , y2) ∈ D and z such that
x1 ≤ z ≤ y1 . Applying (10) and the monotonicity of φ, we
obtain that hAIF(x1 , x2 , y1 , y2) = φ(d(x1 , y1), d(x2 , y2)) ≥
φ(d(x1 , z), d(x2 , y2)) = hAIF(x1 , x2 , z, y2).

Moreover, if max(x2 , y2) + z ≤ 1, it holds that hAIF(x1 ,
x2 , y1 , y2) = φ(d(x1 , y1), d(x2 , y2)) ≥ φ(d(z, y1), d(x2 , y2))
= hAIF(z, x2 , y1 , y2).

AIF-loc.4: The proof is analogous to the one of AIF-loc.3.
AIF-loc.5: Consider (x1 , x2), (y1 , y2) ∈ D and z ∈ [0, 1]

such that max{x2 , y2} + z ≤ 1. Since d(z, z) = 0, it holds
that hAIF(z, x2 , z, y2) = φ(d(z, z), d(x2 , y2) ≤ φ(d(x1 , y1),
d(x2 , y2)) = hAIF(x1 , x2 , y1 , y2).

Thus, hAIF satisfies AIF-loc.1–AIF-loc.5, and therefore, The-
orem 3.2 assures that DAIF is a local AIF-divergence. �

This proposition shows how to use distances to define local
AIF-divergences. Let us see an example of application of this
result.

Example 4.6: Consider the distance d defined by d(u, v) =
|u − v|, and the nondecreasing function φ(u, v) = u+v

2n that triv-
ially satisfies φ(0, 0) = 0. Then, applying the previous result, the
function DAIF defined by (11) is a local AIF-divergence. In fact,
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if we input the values of φ and d, DAIF becomes DAIF(A,B) =
1

2n

∑n
i=1 |μA (xi) − μB (xi)| + |νA (xi) − νB (xi)|.

We have obtained the AIF-divergence defined by Hong and
Kim [see (7)].

To conclude this section, we are going to explore the con-
nection between local AIF-divergences and restricted equiva-
lence functions [8], [9]. A function REF : [0, 1]2 → [0, 1] is a
restricted equivalence function if it satisfies the following prop-
erties.

1) REF (x, y) = REF (y, x) for any x, y ∈ [0, 1].
2) REF (x, y) = 1 if and only if x = y.
3) REF (x, y) = 0 if and only if x = 1, y = 0 or x = 0, y =

1.
4) REF (x, y) = REF (c(x), c(y)) for any x, y ∈ [0, 1] and

strong negation c.
5) For any x, y, z ∈ [0, 1] such that x ≤ y ≤ z, REF (x,

y) ≥ REF (x, z) and REF (y, z) ≥ REF (x, z).
It is known that any restricted equivalence function is in par-

ticular a fuzzy equivalence in the sense of Fodor and Roubens
[14] (see [8, Th. 6]). In [8] and [9], it is proven that restricted
equivalence functions can be used to define fuzzy similarity
measures by means of an aggregation function. Next, we see
how restricted equivalence function can be used to define local
AIF-divergences.

Proposition 4.7: Let REF be a restricted equivalence
function, and let f : [0, 1]2 → [0,∞) be a componentwise
increasing function with f(0, 0) = 0. Then, the function hAIF
(u1 , u2 , v1 , v2) = f(1 − REF (u1 , v1), 1 − REF (u2 , v2))
satisfies properties AIF-loc.1–AIF-loc.5, and therefore, it
defines a local AIF-divergence.

Proof: Let us prove that hAIF satisfies properties AIF-loc.1–
AIF-loc.5.

AIF-loc.1: hAIF(u, v, u, v) = f(1 − REF (u, u), 1 − REF
(v, v)) = f(0, 0) = 0.

AIF-loc.2: Taking into account that REF is commutative,
hAIF(u1 , v1 , u2 , v2)=f(1 − REF (u1 , u2), 1− REF (v1 , v2))
= f(1 − REF (u2 , u1), 1 − REF (v2 , v1)) = hAIF(u2 , v2 ,
u1 , v1).

AIF-loc.3: Let ω ∈ [u1 , v1 ]. Then, it holds that hAIF(u1 ,
u2 , v1 , v2) = f(1 − REF (u1 , v1), 1 − REF (u2 , v2)) ≥ f(1
− REF (u1 , ω), 1 − REF (u2 , v2)) = hAIF(u1 , u2 , ω, v2).

Furthermore, if max{u1 , v1} + ω ≤ 1, it holds that hAIF
(u1 , u2 , v1 , v2) = f(1 − REF (u1 , v1), 1 − REF (u2 , v2)) ≥
f(1−REF (u1 , v1), 1−REF (ω, v2))=hAIF(u1 , ω, v1 , v2).

AIF-loc.4: The proof is analogous to that of AIF-loc.3.
AIF-loc.5: Taking into account that REF (ω, ω) = 0 and f is

componentwise increasing, it holds that hAIF(ω, u2 , ω, v2) =
f(1 − REF (ω, ω), 1 − REF (u2 , v2))≤f(1 − REF (u1 , v1),
1 − REF (u2 , v2)) = hAIF(u1 , u2 , v1 , v2). �

V. LOCAL DIVERGENCES FOR ATANASSOV INTUITIONISTIC

FUZZY SETS VERSUS LOCAL DIVERGENCES

In [26], we have introduced a method that allows us to
build divergences from AIF-divergences and, conversely, AIF-
divergences from divergences. In this section, our aim is to
investigate whether these methods preserve the local property

or not. For this, first of all, we describe those methods, and then,
we study the role of locality.

We start explaining how a divergence can be defined from
an AIF-divergence. This is quite easy because if we restrict
an AIF-divergence to FS(X) × FS(X), it becomes a fuzzy
divergence.

Proposition 5.1 (see[26, Proposition 4.3]): Consider an
AIF-divergence DAIF . Then, the function D : FS(X) ×
FS(X) → R defined by

D(A,B) = DAIF(A,B) for every A,B ∈ FS(X) (12)

is a divergence for fuzzy sets.
Conversely, from a divergence, it is possible to define an

AIF-divergence.
Proposition 5.2 (see[26, Proposition 4.7]): Consider two

fuzzy divergences D1 and D2 and a function f : [0,∞) × [0,
∞) → [0,∞) that is nondecreasing on each component
and satisfies f(0, 0) = 0. Then, the function DAIF : AIFS
(X) × AIFS(X) → R defined, for every A,B ∈ AIFS(X),
by

DAIF(A,B) = f(D1(μA , μB ),D2(νA , νB )) (13)

is an AIF-divergence. In particular, it is possible to consider D1
= D2 , and then, (13) becomes DAIF(A,B)=f(D(μA , μB ),
D(νA , νB )).

From now on, we consider divergences and AIF-divergences
satisfying the local property, and we investigate if this property
is preserved by the methods presented in Propositions 5.1 and
5.2. Next proposition shows that a local fuzzy divergence can
be defined from a local AIF-divergence using the same method
as in Proposition 5.1.

Proposition 5.3: Consider a local AIF-divergence DAIF .
The fuzzy divergence introduced in Proposition 5.1 is a local
fuzzy divergence.

Proof: If DAIF is a local AIF-divergence, it can be
expressed by DAIF(A,B) =

∑n
i=1 hAIF(μA (xi), νA (xi),

μB (xi), νB (xi)).
Now, if A and B are fuzzy sets and we compute the fuzzy

divergence between them, we obtain that D(A,B) = DAIF
(A,B) =

∑n
i=1 hAIF(A(xi), 1 − A(xi), B(xi), 1 − B(xi)) =∑n

i=1 h(A(xi), B(xi)), where h(u, v) = hAIF(u, 1 − u, v, 1 −
v). Let us verify that h satisfies loc.1–loc.3. First of all,
applying AIF-loc.1 to hAIF , it holds that h(u, u) = hAIF
(u, 1 − u, u, 1 − u) = 0. Now, using AIF-loc.2, h(u, v) =
hAIF(u, 1 − u, v, 1 − v)=hAIF(v, 1 − v, u, 1 − u)=h(v, u).

Finally, it only remains to check loc.3. Consider
u < v < w. Applying first AIF-loc.3 and later AIF-
loc.4, it holds that h(u,w) = hAIF(u, 1 − u,w, 1 − w) ≥
max(hAIF(u, 1 − u, v, 1 − w), hAIF(v, 1 − u,w, 1 − w)) ≥
max(hAIF(u, 1 − u, v, 1 − v), hAIF(v, 1 − v, w, 1 − w)) =
max(h(u, v), h(v, w)).

Then, since h satisfies loc.1–loc.3, applying [23, Proposition
3.4], we conclude that D is a local divergence. �

On the other hand, let us investigate what happens with respect
to locality under the conditions of Proposition 5.2.

Proposition 5.4: Under the conditions of Proposition 5.2,
if D1 and D2 are two local divergences, with associated
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functions h1 and h2 , respectively, then the AIF-divergence
DAIF , defined by (13), is local if and only if f can be ex-
pressed by f(u, v) = αu + βv, for some α, β ≥ 0. In such
a case, the function hAIF associated with DAIF is given by
hAIF(u1 , u2 , v1 , v2) = αh1(u1 , v1) + βh2(u2 , v2).

Proof: Assume that both D1 and D2 are two local di-
vergences with associated functions h1 and h2 , that satisfy
properties from loc.1 to loc.3. From Proposition 5.2, DAIF
is defined by DAIF(A,B) = f(

∑n
i=1 h1(μA (xi), μB (xi)),∑n

i=1 h2(νA (xi), νB (xi))).
Assume, on one hand, that f(u, v) = αu + βv. Then, DAIF

(A,B) = α
∑n

i=1 h1(μA (xi), μB (xi)) + β
∑n

i=1 h2(νA (xi),
νB (xi)) =

∑n
i=1 αh1(μA (xi), μB (xi)) + βh2(νA (xi), νB

(xi)).
Thus, DAIF is local and hAIF(u1 , u2 , v1 , v2) = αh1(u1 ,

v1) + βh2(u2 , v2). In addition, hAIF satisfies properties AIF-
loc.1–AIF-loc.5.

On the other hand, if DAIF is a local AIF-divergence with
associated function hAIF , then f(

∑n
i=1 h1(μA (xi), μB (xi)),∑n

i=1 h2(νA (xi), νB (xi))) =
∑n

i=1 hAIF(μA (xi), νA (xi), μB

(xi), νB (xi)).
However, the previous equality holds only if f is a linear

function, that is, if f(u, v) = αu + βv. In addition, both coef-
ficients α and β must be nonnegative since the AIF-divergence
is a nonnegative measure. �

Next example shows how these results can be applied.
Example 5.5: Let us consider the local AIF-divergence

DHK of Hong and Kim defined in (7). On one hand, if we apply
Proposition 5.1, we obtain the following divergence: For every
A,B ∈ FS(X), D(A,B) = DHK(A,B) = 1

2n

∑n
i=1 |A(xi)

−B(xi)| + |(1 − A(xi)) − (1 − B(xi))| = 1
n

∑n
i=1 |A(xi) −

B(xi)|.
This divergence is known as the Hamming distance for fuzzy

sets (see [28]), and it is usually denoted by lF S . Moreover, as
the Hong and Kim AIF-divergence satisfies the local property,
applying Proposition 5.3, the Hamming distance for fuzzy sets
is also a local divergence.

On the other hand, if we consider the function f(u, v) = u+v
2

and we apply Proposition 5.2 to the Hamming distance for fuzzy
sets, we obtain the following AIF-divergence: DAIF(A,B) =
f(lF S (μA , μB ), lF S (νA , νB )) = lF S (μA ,μB )+ lF S (νA ,νB )

2 = 1
2

( 1
n

∑n
i=1 |μA (xi) − μB (xi)| + 1

n

∑n
i=1 |νA (xi) − νB (xi)|) =

1
2n

∑n
i=1(|μA (xi) − μB (xi)| + |νA (xi) − νB (xi)|) = DHK

(A,B).
That is, we obtain the original AIF-divergence, which is

known to be local. However, we could also derive the locality
from the fact that D is a local divergence for fuzzy sets and f is a
linear function with positive parameters.

On the other hand, if we consider the function f ∗(u, v) =
(u2 + v2)

1
2 and we apply Proposition 5.2, we obtain the fol-

lowing AIF-divergence: D∗
AIF(A,B) = f(D(μA , μB ),D(νA ,

νB )) = (D(μA , μB )2 + D(νA , νB )2)
1
2 = ((

∑n
i=1 |μA (xi) −

μB (xi)|)2 + (
∑n

i=1 |νA (xi) − νB (xi)|)2)
1
2 .

Although the Hamming distance for fuzzy sets is a local
divergence, since f is not a linear function, Proposition 5.2
assures that the obtained AIF-divergence DAIF does not satisfy
the local property.

The previous example shows that there are situations in which
from an AIF-divergence DAIF , it is possible to define another
AIF-divergence, using Proposition 5.1 and Proposition 5.2, that
coincides with the original. Obviously, it does not happen al-
ways, as we saw in the previous example. In the rest of this
section, we study when this commutativity holds.

Theorem 5.6: Consider an AIF-divergence DAIF and the di-
vergence D defined by (12). Let D∗

AIF be the AIF-divergence
defined through the function f as in (13) taking D1 = D2 = D,
that is, D∗

AIF(A,B) = f(D(μA , μB ),D(νA , νB )) for every A,
B ∈ AIFS(X).

Then, DAIF = D∗
AIF if and only if for every A,B ∈ AIFS

(X), the following equality holds: DAIF(A,B) = f(DAIF(μA ,
μB ),DAIF(νA , νB )).

In fact, if DAIF is local, with associated function hAIF , DAIF
= D∗

AIF if and only if f(u, v) = αu + βv, for some α, β ≥
0, and hAIF(u1 , u2 , v1 , v2) = αhAIF(u1 , 1 − u1 , v1 , 1 − v1) +
βhAIF(u2 , 1 − u2 , v2 , 1 − v2).

Proof: To prove this result, it suffices to compute the ex-
pression of the AIF-divergence D∗

AIF , that is, D∗
AIF(A,B) = f

(D(μA , μB ),D(νA , νB ))=f(DAIF(μA , μB ),DAIF(νA , νB )).
Take into account that μA and μB are the AIF-sets whose

nonmembership functions are given by 1 − μA and 1 − μB ,
respectively.

Assume now that DAIF is local, with associated function
hAIF . In such a case, Proposition 5.3 assures that D is local,
with associated function h(u, v) = hAIF(u, 1 − u, v, 1 − v).
Developing the expression of D∗

AIF(A,B), we obtain that D∗
AIF

(A,B) = f(D(μA , μB ),D(νA , νB ))=f(
∑n

i=1 hAIF(μA (xi),
1 − μA (xi), μB (xi), 1 − μB (xi)),

∑n
i=1 hAIF(νA (xi), 1 − νA

(xi), νB (xi), 1 − νB (xi))).
By Proposition 5.4, we know that D∗

AIF is local if and only
if f(u, v) = αu + βv, for some α, β ≥ 0. In such a case,
D∗

AIF(A,B)=α
∑n

i=1 hAIF(μA (xi), 1−μA (xi), μB (xi), 1 −
μB (xi)) + β

∑n
i=1 hAIF(νA (xi), 1 − νA (xi), νB (xi), 1 − νB

(xi)).
Thus, DAIF = D∗

AIF if and only if
∑n

i=1 hAIF(μA (xi), νA

(xi), μB (xi), νB (xi))= α
∑n

i=1 hAIF(μA (xi), 1−μA (xi), μB

(xi), 1 − μB (xi))+β
∑n

i=1 hAIF(νA (xi), 1−νA (xi), νB (xi),
1 − νB (xi)).

Consequently, DAIF = D∗
AIF if and only if f(u, v) = αu +

βv and hAIF(u1 , u2 , v1 , v2) = αhAIF(u1 , 1 − u1 , v1 , 1 − v1)
+ βhAIF(u2 , 1 − u2 , v2 , 1 − v2) for every (u1 , u2), (v1 , v2) ∈
D = {(u, v) ∈ [0, 1]2 : u + v ≤ 1}. �

Conversely, we now characterize the situations under which a
divergence for fuzzy sets coincide with the divergence obtained
by applying Propositions 5.1 and 5.2.

Theorem 5.7: Let D be a divergence for fuzzy sets, and let
DAIF be the AIF-divergence derived from Proposition 5.2 using
the function f . Denote by D∗ the divergence derived from DAIF
by using Proposition 5.1. Then, D = D∗ if and only if f(u, v) =
u for every (u, v) ∈ D.

Proof: Let us compute the expression of D∗: D∗(A,B) =
DAIF(A,B) = f(D(A,B),D(Ac,Bc)). Thus, D(A,B) =
D∗(A,B) if and only if f(u, v) = u. �

Note that if D is a local divergence, the obtained result is also
local, since f(u, v) = u is a linear function.
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Example 5.8: Consider the Hamming distance for fuzzy sets
lF S (A,B)=

∑n
i=1 |A(xi)−B(xi)|, for every A,B ∈ FS(X).

It is obvious that this divergence is local with associated function
h(u, v) = |u − v|. Applying Proposition 5.2, we can build an
AIF-divergence: DAIF(A,B) = f(

∑n
i=1 |μA (xi) − μB (xi)|,∑n

i=1 |νA (xi) − νB (xi)|).
In addition, from Proposition 5.4, DAIF is local if and only

if f(u, v) = αu + βv for some α, β ≥ 0. Using Proposi-
tion 5.1, it is possible to build another divergence: D∗(A,B) =
f (

∑n
i=1 |A(xi) − B(xi)|,

∑n
i=1 |A(xi) − B(xi)|).

Then, D∗(A,B) = D(A,B) if and only if f(u, u) = u. In
particular, both divergences are the same if f(u, v) = u, as The-
orem 5.7 assures.

Consider now the AIF-divergence DHK defined by Hong and
Kim in (7). Applying Proposition 5.1, we can build a divergence
for fuzzy sets: D(A,B) = DHK(A,B) = 1

n

∑n
i=1 |A(xi) −

B(xi)| = lF S (A,B).
If we now apply Proposition 5.2, we can build another AIF-

divergence given by DAIF(A,B) = f(D(μA , μB ),D(νA , νB ))
=f( 1

n

∑n
i=1 |μA (xi)−μB (xi)|, 1

n

∑n
i=1 |νA (xi) − νB (xi)|).

Thus, we conclude that DAIF(A,B) = DHK(A,B) if and
only if f(x, y) = x+y

2 .
Our final result considers Theorems 5.6 and 5.7 simultane-

ously to see under which conditions, the methods described in
Propositions 5.1 and 5.2 are commutative.

Theorem 5.9: Let D be a divergence for fuzzy sets. Using
Proposition 5.2, we can define an AIF-divergence DAIF . Using
Proposition 5.1, we define another divergence D∗, and finally,
using Proposition 5.2, once more, we define another AIF-
divergence D∗

AIF . Then, D = D∗ and DAIF = D∗
AIF if and

only if f(u, v) = u and DAIF(A,B) = D(μA , μB ) for every
A,B ∈ AIFS(X).

In such conditions, if D is local with associated function h,
DAIF is also local with associated function hAIF(u1 , u2 , v1 , v2)
= h(u1 , v1).

Proof: On one hand, from Theorem 5.7, we know that D =
D∗ if and only if f(u, v) = u. Moreover, from Theorem 5.6,
DAIF = D∗

AIF if and only if DAIF(A,B) = f(DAIF(μA , μB ),
DAIF(νA , νB )). As f(u, v) = u, DAIF = D∗

AIF if and only if
DAIF(A,B) = DAIF(μA , μB ) = D(μA , μB ). In such a case, if
D is local with associated function h, DAIF is also local since f
is linear (Proposition 5.2), and it holds that: DAIF(A,B) =
D(μA , μB ) =

∑n
i=1 h(μA (xi), μB (xi)). Thus, hAIF(u1 , u2 ,

v1 , v2) = h(u1 , v1). �

VI. APPLICATIONS

Up to now, we have investigated local AIF-divergences and
their main properties. However, local AIF-divergences are not
only interesting from a theoretical point of view, but they also
have several applications. In this section, we show how they
can be applied in two different fields: multiple attribute decision
making and pattern recognition.

A. Application to Pattern Recognition

One interesting area of application of comparison measures
for AIF-sets is in pattern recognition [16], [17], [19]. Let us

consider a universe X = {x1 , . . . , xn}, and assume the pat-
terns A1 , . . . , Am , are represented by AIF-sets. Here, xi’s are
attributes and Ai’s can be viewed as prototypes. Then, Aj =
{(xi, μAj (xi), νAj (xi) : i = 1, . . . , n}, for j = 1, . . . , n.

If B is a sample that is also represented by an AIF-set, and we
want to classify it into one of the patterns, we can measure the
difference between B and Ai as DAIF(A1 , B), . . . , DAIF(Am ,
B), where DAIF is an AIF-divergence. Finally, we associate B
to the pattern Aj whenever DAIF(Aj ,B) = mini=1,...,m (DAIF
(Ai,B)), i.e., we classify B into the pattern from which it differs
the least.

Example 6.1 (see[19, Sec. 4]): Let us consider an universe
with three elements, X = {x1 , x2 , x3}, and the following three
patterns: A1 ={(x1 , 0.1, 0.1), (x2 , 0.5, 0.4), (x3 , 0.1, 0.9)}. A2
= {(x1 , 0.5, 0.5), (x2 , 0.7, 0.3), (x3 , 0, 0.8)} and A3 = {(x1 ,
0.7, 0.2), (x2 , 0.1, 0.8), (x3 , 0.4, 0.4)}.

Assume that a sample B = {(x1 , 0.4, 0.4), (x2 , 0.6, 0.2),
(x3 , 0, 0.8)} is given, and let us consider the Hamming and
the Hausdorff distances for AIF-sets. We obtain the following
results:

A1 A2 A3

lIFS(Ai,B) 1 0.4 1.3

dH(Ai,B) 0.6 0.2 1.3

.

Thus, both AIF-divergences classify B into the pattern A2 ,
because lIFS(A2 , B) ≤ lIFS(A1 , B), lIFS(A3 , B) and dH(A2 ,
B) ≤ dH(A1 , B), dH(A3 , B).

This is a particular example in which no assumption is made
over the elements on X . This is equivalent to assuming that
attributes are equally weighted: The weight αi of the attribute
xi is 1

n , where n is the number of attributes. However, in the
framework of pattern recognition, it is possible to have different
αi’s for different attributes. This problem cannot been tackled
using the approaches in [16], [17], [19], and [31]. However, our
approach can be adapted using the local property. For this aim,
let us consider a local AIF-divergence DAIF , and for every at-
tribute xi , using (2), we compute the following difference DAIF
(Aj ,B) − DAIF(Aj ∪ {xi}, B ∪ {xi}) = hAIF(μAj (xi), νAj

(xi), μB (xi), νB (xi)). Then, for every j ∈ {1, . . . , m},
we have that d(Aj ,B) =

∑n
i=1 αi(DAIF(Aj ,B) − DAIF

(Aj ∪ {xi}, B ∪ {xi})) =
∑n

i=1 αihAIF(μAj (xi), νAj (xi), μB

(xi), νB (xi)), where αi are the weights of the attributes
(αi > 0 and

∑n
i=1 αi = 1). This function d(Aj ,B) computes

the differences between Aj and B in each attribute and, then,
aggregates them according to the respective weights. Finally,
we classify the sample B into the pattern Aj if d(Aj ,B) =
mini=1,...,m (d(Ai,B)).

Note that the key of this approach is the fact that the AIF-
divergence can be computed pointwise, and therefore, it is pos-
sible to add the weight of each attribute. In general, if we follow
the usual procedures in [16], [17], [19], and [31], this step cannot
be done. To show how to apply it, we consider a slightly modi-
fied version of [31, Example 4.2], in which we shall assume that
the attributes have different weights.

Example 6.2 (see[31, Example 4.2]): Consider five mineral
fields where each field is featured by the content of six minerals
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TABLE I
SIX KINDS OF MATERIALS ARE REPRESENTED BY AIF-SETS

x1 x2 x3 x4 x5 x6

μA 1 (xi ) 0.739 0.033 0.188 0.492 0.020 0.739
νA 1 (xi ) 0.125 0.818 0.626 0.358 0.628 0.125
μA 2 (xi ) 0.124 0.030 0.048 0.136 0.019 0.393
νA 2 (xi ) 0.665 0.825 0.800 0.648 0.823 0.653
μA 3 (xi ) 0.449 0.662 1.000 1.000 1.000 1.000
νA 3 (xi ) 0.387 0.298 0.000 0.000 0.000 0.000
μA 4 (xi ) 0.280 0.521 0.470 0.295 0.188 0.735
νA 4 (xi ) 0.715 0.368 0.423 0.658 0.806 0.118
μA 5 (xi ) 0.326 1.000 0.182 0.156 0.049 0.675
νA 5 (xi ) 0.452 0.000 0.725 0.765 0.896 0.263
μB (xi ) 0.629 0.524 0.210 0.218 0.069 0.658
νB (xi ) 0.303 0.356 0.689 0.753 0.876 0.256

and each field contains one kind of typical hybrid mineral. The
five kinds of typical hybrid minerals are represented by AIF-sets
A1 , A2 , A3 , A4 , and A5 in X = {x1 , . . . , x6}, respectively.
Assume that we are given another kind of hybrid mineral B,
and that we want to classify it into one of the aforementioned
mineral fields. Assume that the AIF-sets Ai and B are defined
in Table I, and that our experts have established the following
weight vector on X: α =

{ 1
4 , 1

4 , 1
8 , 1

8 , 1
8 , 1

8

}
. Let us use our

method to classify B. If we consider the Hamming distance for
AIF-sets as local AIF-divergence, we obtain that the values of
lIFS(Aj ,B) − lIFS(Aj ∪ {xi}, B ∪ {xi}) are

x1 x2 x3 x4 x5 x6
j = 1 0.178 0.491 0.085 0.395 0.297 0.131

j = 2 0.505 0.494 0.162 0.187 0.103 0.397

j = 3 0.180 0.138 0.790 0.782 0.931 0.342

j = 4 0.412 0.012 0.266 0.095 0.119 0.138

j = 5 0.303 0.476 0.036 0.062 0.020 0.024

.

whence d(A1 , B)= 1
4 0.178 + 1

4 0.491 + 1
8 0.085 + 1

8 0.395 + 1
8

0.297 + 1
8 0.131 = 0.2808, d(A2 , B) = 1

4 0.505 + 1
4 0.494 + 1

8
0.162 + 1

8 0.187 + 1
8 0.103 + 1

8 0.397 = 0.3559, d(A3 , B) = 1
4

0.180 + 1
4 0.138 + 1

8 0.790 + 1
8 0.782 + 1

8 0.931 + 1
8 0.342 =

0.4351, d(A4 , B) = 1
4 0.412 + 1

4 0.012 + 1
8 0.266 + 1

8 0.095 +
1
8 0.119 + 1

8 0.138 = 0.1833, and d(A5 , B) = 1
4 0.303 + 1

4
0.476 + 1

8 0.036 + 1
8 0.062 + 1

8 0.020 + 1
8 0.024 = 0.2125.

Thus, we classify B into the hybrid mineral A4 .
If we repeat the process with local AIF-divergence dH , we

obtain the following values of dH(Aj ,B) − dH(Aj ∪ {xi}, B ∪
{xi}):

x1 x2 x3 x4 x5 x6
j = 1 0.178 0.491 0.063 0.395 0.248 0.131

j = 1 0.505 0.494 0.162 0.105 0.053 0.397

j = 3 0.180 0.138 0.790 0.782 0.931 0.342

j = 4 0.412 0.012 0.266 0.095 0.119 0.138

j = 5 0.303 0.476 0.036 0.062 0.020 0.017

.

Then, d(A1 , B) = 1
4 0.178 + 1

4 0.491 + 1
8 0.063 + 1

8 0.395 + 1
8

0.248 + 1
8 0.131 = 0.2719, d(A2 , B) = 1

4 0.505 + 1
4 0.494 + 1

8
0.162 + 1

8 0.105 + 1
8 0.053 + 1

8 0.397 = 0.3394, d(A3 , B) = 1
4

0.180 + 1
4 0.138 + 1

8 0.790 + 1
8 0.782 + 1

8 0.931 + 1
8 0.342 =

0.4351, d(A4 , B)= 1
4 0.412 + 1

4 0.012 + 1
8 0.266 + 1

8 0.095 + 1
8

0.119 + 1
8 0.138 = 0.1833, and d(A5 , B)= 1

4 0.303 + 1
4 0.476

+ 1
8 0.036 + 1

8 0.062 + 1
8 0.020 + 1

8 0.017 = 0.2116, and we
conclude that we also should classify B into the hybrid mineral
A4 .

We consider that our approach fits better than previous
approaches in pattern recognition problems where different
weights are associated with different attributes. As we have seen,
the local property plays a key role because it allows one to de-
compose the computation of the difference between each at-
tribute and the object to a pointwise computation.

B. Application to Decision Making

In [32], Xu showed how measures of similarity for AIF-sets
can be applied within multiple attribute decision making. Let us
overview the main aspects of this application.

We use the following notation: Let A = {A1 , . . . , Am} de-
note a set of m alternatives, let C = {C1 , . . . , Cn} be a set of
attributes, and let α = {α1 , . . . , αn} be its associated weight
vector (i.e., they satisfy that αi ≥ 0 for every i = 1, . . . , n and
that α1 + . . . + αn = 1).

Every alternative Ai can be represented by means of an AIF-
set Ai = {(Cj , μAi

(Cj ), νAi
(Cj ) : j = 1, . . . , n}. Thus, μAi

(Cj ) and νAi
(Cj ) stand for the degree in which alternative Ai

agrees and does not agree with characteristic Cj , respectively.
Xu [32] defined the AIF-sets A+ and A− in the following way:

A+ = {(Cj , μA+ (Cj ), νA+ (Cj )) : j = 1, . . . , n} and A− =
{(Cj , μA−(Cj ), νA−(Cj )) : j = 1, . . . , n}, where μA+ (Cj ) =
maxi=1,...,m (μAi

(Cj )), νA+ (Cj ) = mini=1,...,m (νAi
(Cj )),

μA− (Cj ) = mini = 1,..., m (μAi
(Cj )) and νA− (Cj ) =

maxi=1,...,m (νAi
(Cj )), that is, A+ =

⋃m
i=1 Ai and A− =⋂m

i=1 Ai .
These AIF-sets can be interpreted as the “optimal” and the

“least optimal” alternatives. Therefore, the preferred alternative
in A would be the one that is simultaneously most similar to A+

and most different to A−.
In order to measure how different is Ai from both A+ and

A−, Xu considered one of the following functions: D1(A,
B)=[

∑n
j=1 αj (|μA (Cj ) − μB (Cj )|β + |νA (Cj ) − νB (Cj )|β

+ |πA (Cj ) − πB(Cj )|β )]
1
β , D2(A,B) = ((

∑n
j=1 αj (|μA (Cj )

− μB (Cj )|β + |νA (Cj ) − νB (Cj )|β )+|πA (Cj )−πB(Cj )|β )/
x(

∑n
j=1 αj (|μA (Cj ) + μB (Cj )|β + |νA (Cj ) + νB (Cj )|β ) +

|πA (Cj )+πB(Cj )|β ))
1
β ,D3(A,B)=(

∑n
j=1 αj (min(μA (Cj ),

μB (Cj )) + min(νA (Cj ), νB (Cj )) + min(πA (Cj ), πB(Cj ))))
/(

∑n
j=1 αj (max(μA (Cj ), μB (Cj )) + max(νA (Cj ), νB (Cj ))

+ max(πA (Cj ), πB(Cj )))), and D4(A,B) = (
∑n

j=1 αj (μA

(Cj )μB (Cj ) + νA (Cj ) νB (Cj ) + πA (Cj )πB(Cj )))/(max
(
∑n

j=1 αj (μ2
A (Cj ) + ν2

A (Cj )+ π2
A (Cj )),

∑n
j=1 αj (μ2

B (Cj ) +
ν2

B (Cj ) + π2
B(Cj )))).
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Besides, Xu consider the quotient: di = Dj (A+ ,Ai )
Dj (A+ ,Ai )+D (A−,Ai )

for j = 1, 2, 3, 4. Then, the greater the value di , the worst is the
alternative Ai .

This was the approach followed in [32]. However, we think
that his proposal can be improved in two directions.

1) First of all, none of the functions Dj are AIF-divergences,
except for the trivial case of D1 with β = 1. We have
already argued in [26] that from our point of view, AIF-
divergences are the adequate measures of comparison of
AIF-sets because they require more restrictive conditions,
and therefore, they can avoid counterintuitive measures.

2) Second, since the measure of comparison chosen in [32]
cannot be computed pointwise, the weights cannot be put
into the measure.

Taking into account these two comments, we next propose a
modification of the above method using local AIF-divergences.
Let us consider a local AIF-divergence DAIF so that for every
pair of AIF-sets A and B, DAIF(A,B) can be expressed by
DAIF(A,B)=

∑n
i=1 hAIF(μA (Ci), νA (Ci), μB (Ci), νB (Ci)).

We consider the AIF-set Ai , which represents the ith alter-
native, and for every j ∈ {1, . . . , n}, we compute the follow-
ing: DAIF(A+ , Ai) − DAIF(A+ ∪ {Cj}, Ai ∪ {Cj}) = hAIF
(μA+ (Cj ), νA+ (Cj ), μAi

(Cj ), νAi
(Cj )).

This quantity measures how different are A+ and Ai in the
element Cj . Then, we can compute the difference between
Ai and A+ : d(Ai,A

+) =
∑n

j=1 αjhAIF(μA+ (Cj ), νA+ (Cj ),
μAi

(Cj ), νAi
(Cj )). This way, d(Ai,A

+) measures how much
difference there is between Ai and the optimal set A+ .

Similarly, we can compute the difference between Ai and
A−: d(Ai,A

−) =
∑n

j=1 αjhAIF(μA−(Cj ), νA−(Cj ), μAi
(Cj ),

νAi
(Cj )). In a similar way, d(Ai,A

−) measures how Ai differs
from the least optimal A−.

Thus, if we consider a map ψ : [0,∞) × [0,∞) → [0,∞)
that is nonincreasing in the first component and nondecreasing
on the second one, we obtain the following value ai for alter-
native Ai : ai = ψ(d(Ai,A

+), d(Ai,A
−)). Thus, the greater the

value of ai , the more preferred is the alternative Ai .
Obviously, we can choose the function ψ depending on which

part we are more interested: the difference between Ai and the
optimum A+ or the difference between Ai and the least optimum
A−. The following examples illustrate this fact.

Example 6.3 (see[32, Sec. 4]): A city is planning to build a
library, and the city commissioner has to determine the air-
conditioning system to be installed in the library. The builder of-
fers the commissioner five feasible alternatives Ai ; i = 1, . . . , 5,
which might be adapted to the physical structure of the library.
Suppose that three attributes C1 (economic), C2 (functional),
and C3 (operational) are taken into consideration in the instal-
lation problem, and that the weight vector of the attributes Cj is
α = (0.3, 0.5, 0.2). Assume, moreover, that the characteristics
of the alternatives Ai are represented by the following AIF-
sets: A1 = {(C1 , 0.2, 0.4), (C2 , 0.7, 0.1), (C3 , 0.6, 0.3)}, A2 =
{(C1 , 0.4, 0.2), (C2 , 0.5, 0.2), (C3 , 0.8, 0.1)}, A3 = {(C1 , 0.5,
0.4), (C2 , 0.6, 0.2), (C3 , 0.9, 0)}, A4 = {(C1 , 0.3, 0.5), (C2 ,
0.8, 0.1), (C3 , 0.7, 0.2)}, and A5 = {(C1 , 0.8, 0.2), (C2 , 0.7,
0), (C3 , 0.1, 0.6))}.

For these AIF-sets, the corresponding A+ and A− are given
by A+ = {(C1 , 0.8, 0.2), (C2 , 0.8, 0), (C3 , 0.9, 0)} and A− =
{(C1 , 0.2, 0.5), (C2 , 0.5, 0.2), (C3 , 0.1, 0.6)}. Then, if we con-
sider the Hamming distance for AIF-sets, we obtain the follow-
ing values for lIFS(Ai,A

+) − lIFS(Ai ∪ {Cj}, A+ ∪ {Cj})
and lIFS(Ai,A

−) − lIFS(Ai ∪ {Cj}, A− ∪ {Cj})

C1 C2 C3

i = 1, A+ 1.2 0.2 0.6

i = 1, A− 0.2 0.4 1
i = 2, A+ 0.8 0.6 0.2

i = 2, A− 0.6 0 1.4
i = 3, A+ 0.6 0.4 0

i = 3, A− 0.6 0.2 1.6
i = 4, A+ 1 0.2 0.4

i = 4, A− 0.2 0.6 1.2
i = 5, A+ 0 0.2 1.6

i = 5, A− 1.2 0.4 0

Thus

A1 A2 A3 A4 A5
d(Ai, A+) 0.58 0.58 0.38 0.48 0.42
d(Ai, A−) 0.46 0.46 0.60 0.60 0.56.

Assume that we want to choose the alternative that is, at the
same time, more similar to the optimum A+ and less similar to
the least optimum A−. In such a case, we can consider the func-
tion ψ given by ψ(x, y) = 1

2

( 1
x + y

)
assuming x > 0. We can

see that this function takes into account the difference between
Ai and A+ and between Ai and A−. We obtain the following
results:

a1 = ψ(d(A1 , A
+), d(A1 , A

−)) =
1
2

( 1
0.58

+ 0.46
)

= 1.09

a2 = ψ(d(A2 , A
+), d(A2 , A

−)) =
1
2

( 1
0.58

+ 0.46
)

= 1.09

a3 = ψ(d(A3 , A
+), d(A3 , A

−)) =
1
2

( 1
0.38

+ 0.6
)

= 1.62

a4 = ψ(d(A4 , A
+), d(A4 , A

−)) =
1
2

( 1
0.48

+ 0.6
)

= 1.34

and

a5 = ψ(d(A5 , A
+), d(A5 , A

−)) =
1
2

( 1
0.42

+ 0.56
)

= 1.47.

Since a3 > a5 > a4 > a1 = a2 , we decide in favor of A3 .
Now, let us assume that we decide to choose the alternative

that is more similar to the optimum A+ , regardless of the dif-
ference from A−. In that case, we may consider ψ(x, y) = 1

x .
This function only depends on the difference between Ai and
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the optimum A+ . We obtain the following result:

a1 = ψ(d(A1 , A
+), d(A1 , A

−)) =
1

d(A1 , A+)
=

1
0.58

a2 = ψ(d(A2 , A
+), d(A2 , A

−)) =
1

d(A2 , A+)
=

1
0.58

a3 = ψ(d(A3 , A
+), d(A3 , A

−)) =
1

d(A3 , A+)
=

1
0.38

a4 = ψ(d(A4 , A
+), d(A4 , A

−)) =
1

d(A4 , A+)
=

1
0.48

and

a5 = ψ(d(A5 , A
+), d(A5 , A

−)) =
1

d(A5 , A+)
=

1
0.42

.

Thus, A3 � A5 � A4 � A1 ∼ A2 , and as a consequence, the
best alternative is A3 .

Finally, let us assume that we are interested in the alterna-
tive that differs most from the worst alternative A−. In such a
situation, we should consider ψ(x, y) = y. This function only
depends on the difference between Ai and A−. We obtain the
following results:

a1 = ψ(d(A1 , A
+), d(A1 , A

−)) = d(A1 , A
−) = 0.46

a2 = ψ(d(A2 , A
+), d(A2 , A

−)) = d(A2 , A
−) = 0.46

a3 = ψ(d(A3 , A
+), d(A3 , A

−)) = d(A3 , A
−) = 0.6

a4 = ψ(d(A4 , A
+), d(A4 , A

−)) = d(A4 , A
−) = 0.6

and

a5 = ψ(d(A5 , A
+), d(A5 , A

−)) = d(A5 , A
−) = 0.56.

Thus, we obtain that A3 ∼ A4 � A5 � A1 ∼ A2 . We conclude
that in this case A3 and A4 are the preferred alternatives. �

Example VI.4: Consider the previous example, but now with
the Hausdorff distance for AIF-sets. Using the same AIF-
sets, we obtain that the values of dH(Ai,A

+) − dH(Ai ∪
{Cj}, A+ ∪ {Cj}) and dH(Ai,A

−) − dH(Ai ∪ {Cj}, A− ∪
{Cj}) are

C1 C2 C3

i = 1, A+ 0.6 0.1 0.3

i = 1, A− 0.3 0.2 0.5
i = 2, A+ 0.4 0.3 0.1

i = 2, A− 0.3 0 0.7
i = 3, A+ 0.3 0.2 0

i = 3, A− 0.3 0.1 0.8
i = 4, A+ 0.5 0.1 0.2

i = 4, A− 0.3 0.3 0.6
i = 5, A+ 0 0.1 0.8

i = 5, A− 0.6 0.2 0

Then

A1 A2 A3 A4 A5
d(Ai,A

+) 0.29 0.3 0.19 0.26 0.29
d(Ai,A

−) 0.34 0.3 0.38 0.42 0.28.

As before, we first look for the alternative that is, at the same
time, most similar to the optimum A+ and least similar to the
least optimum A− with the function ψ(x, y) = 1

2

( 1
x + y

)
. It

holds that

a1 = ψ(d(A1 , A
+), d(A1 , A

−)) =
1
2

( 1
0.29

+ 0.34
)

= 3.79

a2 = ψ(d(A2 , A
+), d(A2 , A

−)) =
1
2

( 1
0.3

+ 0.3
)

= 3.63

a3 = ψ(d(A3 , A
+), d(A3 , A

−)) =
1
2

( 1
0.19

+ 0.38
)

= 5.64

a4 = ψ(d(A4 , A
+), d(A4 , A

−)) =
1
2

( 1
0.26

+ 0.42
)

= 4.27

and

a5 = ψ(d(A5 , A
+), d(A5 , A

−)) =
1
2

( 1
0.29

+ 0.28
)

= 3.72.

Then, A3 � A4 � A1 � A5 � A2 , and again, A3 is the pre-
ferred alternative.

Now, we want to consider the alternative that is most similar
to the optimal A+ . Then, a possible function ψ is ψ(x, y) = 1

x .
In such a case,

a1 = ψ(d(A1 , A
+), d(A1 , A

−)) =
1

d(A1 , A+)
=

1
0.29

a2 = ψ(d(A2 , A
+), d(A2 , A

−)) =
1

d(A2 , A+)
=

1
0.3

a3 = ψ(d(A3 , A
+), d(A3 , A

−)) =
1

d(A3 , A+)
=

1
0.19

a4 = ψ(d(A4 , A
+), d(A4 , A

−)) =
1

d(A4 , A+)
=

1
0.26

and

a5 = ψ(d(A5 , A
+), d(A5 , A

−)) =
1

d(A5 , A+)
=

1
0.29

Then, it holds that A3 � A4 � A1 ∼ A5 � A2 , and therefore,
the alternative A3 is still the preferred one.

Finally, if we look for the alternative that differs most from
the worst possibility A−, we can choose ψ(x, y) = y. In that
case,

a1 = ψ(d(A1 , A
+), d(A1 , A

−)) = d(A1 , A
−) = 0.34

a2 = ψ(d(A2 , A
+), d(A2 , A

−)) = d(A2 , A
−) = 0.3

a3 = ψ(d(A3 , A
+), d(A3 , A

−)) = d(A3 , A
−) = 0.38

a4 = ψ(d(A4 , A
+), d(A4 , A

−)) = d(A4 , A
−) = 0.42

and

a5 = ψ(d(A5 , A
+), d(A5 , A

−)) = d(A5 , A
−) = 0.28.

We conclude that A4 � A3 � A1 � A2 � A5 , whence A4 is
the best alternative. �

The approach we have presented considers local AIF-
divergences that allows us to compute the differences point-
wise, and therefore, we can use different weights for differ-
ent attributes/points. Furthermore, instead of using a function



372 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 2, APRIL 2016

ψ(x, y) = x
x+y , we define our procedure for a generic func-

tion ψ that can be defined by the expert depending on his/her
preferences.

VII. CONCLUDING REMARKS

In our previous paper [26], we have introduced and in-
vestigated measures of comparison of AIF-sets named AIF-
divergences. We have also justified why we considered AIF-
divergences more adequate measures of comparison of AIF-sets
than dissimilarities or distances.

In this paper, we have focused on a family of AIF-divergences
that satisfies a local property. This local property allows us
to define and compute the difference between two AIF-sets
in a pointwise manner. This is an interesting property, and it
is usually helpful for some application areas such as image
processing, where “pointwise” computation can be understood
as “pixel by pixel” computation.

After studying the properties of local AIF-divergences, we
have demonstrated how this family of AIF-divergences can be
applied in two different fields: pattern recognition and deci-
sion making. For pattern recognition, we can have applications
where each attribute has an associated weight or importance.
We have demonstrated how local divergence can effectively use
this set of weights in decision making. This problem cannot be
tackled with the usual approaches because they usually do not
require the local property to define measures of comparison.
Here, we have used local AIF-divergences to improve a method
proposed in [32]. The original approach considered only four
particular measures of comparisons, and none of them were
AIF-divergences. Since we view AIF-divergences as more ade-
quate measures of comparisons, we have adapted Xu’s approach
to use local AIF-divergences.

Two important problems arise from our results. First, some
real-life problems are defined over weighted universes. For ex-
ample, in pattern recognition, different features may have differ-
ent relevance (weights) in decision making. Therefore, it would
be interesting to investigate if it is possible to consider that
weights in the definition of locality, in the sense that the differ-
ence between DAIF(A,B) and DAIF(A ∪ {x}, B ∪ {x}) de-
pends on the membership and nonmembership degrees of x to
A and B as well as on the weight associated with x. Second,
some authors have defined entropy measures for AIF-sets [7],
[27], [29]. We think that local AIF-divergences could generate
entropy measures just by imposing some additional properties.
We leave these for our future investigation. In addition, we would
like to develop applications of the local divergence measures in
real-life large-scale pattern recognition problems.

REFERENCES

[1] K. Atanassov, “Intuitionistic fuzzy sets,” in Proc. VII ITKR Session, Sofia,
Bulgaria, 1983.

[2] K. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20,
pp. 87–96, 1986.

[3] K. Atanassov, “More on intuitionistic fuzzy sets,” Fuzzy Sets Syst.,
vol. 33, no. 1, pp. 37–46, 1989.

[4] K. Atanassov, “Operators over interval valued intuitionistic fuzzy sets,”
Fuzzy Sets Syst., vol. 61, pp. 137–147, 1994.

[5] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications.
Wyrzburg, Germany: Physica-Verlang, 1999.

[6] B. Bouchon-Meunier, M. Rifqi, and S. Bothorel, “Towards general mea-
sures of comparison of objects,” Fuzzy Sets Syst., vol. 84, pp. 143–153,
1996.

[7] P. Burrillo and H. Bustince, “Entropy on intuitionistic fuzzy sets and
on interval-valued fuzzy sets,” Fuzzy Sets Syst., vol. 78, pp. 305–316,
1996.

[8] H. Bustince, E. Barrenechea, and M. Pagola, “Restricted equiva-
lence functions,” Fuzzy Sets Syst., vol. 157, no. 17, pp. 2333–2346,
2006.

[9] H. Bustince, E. Barrenechea, and M. Pagola, “Relationship between re-
stricted dissimilarity functions, restricted equivalence functions and nor-
mal EN -functions: Image thresholding invariant,” Pattern Recog. Lett.,
vol. 29, no. 4, pp. 525–536, 2008.

[10] S. M. Chen, “Measures of similarity between vague sets,” Fuzzy Sets Syst.,
vol. 74, no. 2, pp. 217–223, 1995.

[11] S. M. Chen, “Similarity measures between vague sets and between ele-
ments,” IEEE Trans. Syst., Man, Cybernet., vol. 27, no. 1, pp. 153–158,
Feb. 1997.

[12] I. Couso, L. Garrido, and L. Sánchez,“Similarity and dissimilarity mea-
sures between fuzzy sets: A formal relational study,” Inf. Sci., vol. 229,
pp. 122–141, 2013.

[13] G. Deschrijver and E. Kerre, “A generalization of operators on intuition-
istic fuzzy sets using triangular norms and conorms,” Notes IFS, vol. 1,
pp. 19–27, 2002.

[14] J. Fodor and M. Roubens,” Fuzzy Preference Modelling and Multicriteria
Decision Support (Theory Decision Library). , Dordrecht, The Nether-
lands: Kluwer, 1994.

[15] D. H. Hong and C. Kim, “A note on similarity measures between vague
sets and between elements,” Inf. Sci., vol. 115, pp. 83–96, 1999.

[16] W-L. Hung and M. S Yang, “Similarity measures of intuitionistic fuzzy
sets based on Hausdorff distance,” Pattern Recog. Lett., vol. 25, 1603–
1611, 2004.

[17] W. L. Hung and M. S Yang, “Similarity measures of intuitionistic fuzzy
sets based on Lp metric,” Int. J. Approx. Reason., vol. 46, pp. 120–136,
2007.

[18] D. F. Li, C. Zhongxian, and Y. Degin, “Similarity measures between vague
sets and vague entropy,” J. Comput. Sci., vol. 29, no. 12, pp. 129–132,
2002.

[19] Z. Liang and P. Shi, “Similarity measures on intuitionistic fuzzy sets,”
Pattern Recog. Lett., vol. 24, pp. 2687–2693, 2003.

[20] X. Lui, “Entropy, distance measure and similarity measure of fuzzy
sets and their relations,” Fuzzy Sets Syst., vol. 52, pp. 305–318,
1992.

[21] P. Melo-Pinto, P. Couto, H. Bustince, E. Barrenechea, M. Pagola, and J.
Fernández, “Image segmentation using Atanassov’s intuitionistic fuzzy
sets,” Expert Syst. Appl., vol. 40, pp. 15–26, 2013.

[22] H. B. Mitchell, “On the Dengfeng-Chuntian similarity measure and its
application to pattern recognition,” Pattern Recog. Lett., vol. 24, pp. 3101–
3104, 2003.

[23] S. Montes, I. Couso, P. Gil, and C. Bertoluzza, “Divergence mea-
sure between fuzzy sets,” Int. J. Approx. Reason., vol. 30, pp. 91–105,
2002.
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