Number of the records: 1  

For graph maps, one scrambled pair implies Li-Yorke chaos

  1. TitleFor graph maps, one scrambled pair implies Li-Yorke chaos
    Par.titlePre zobrazenia grafov, jedna chaotická dvojica implikuje Li-Yorkov chaos
    Author infoSylvie Ruette, Ľubomír Snoha
    Author Ruette Sylvie (50%)
    Co-authors Snoha Ľubomír 1955- (50%) UMBFP10 - Katedra matematiky
    Source document Proceedings of the American Mathematical Society. Vol. 142, no. 6 (2014), pp. 2087-2100. - Providence : American Mathematical Society, 2014
    Keywords scrambled pair   Li-Yorkov chaos - Li-Yorke chaos   grafy - charts - graphs   metrické priestory - metric spaces  
    LanguageEnglish
    CountryUnited States of America
    systematics 51
    AnnotationIt is known that, for interval and circle maps, the existence of a scrambled pair implies Li-Yorke chaos, in fact the existence of a Cantor scrambled set. We prove that the same result holds for graph maps. We further show that on compact countable metric spaces one scrambled pair implies the existence of an infinite scrambled set
    Public work category ADC
    No. of Archival Copy31468
    Repercussion category RAINES, Brian E. - UNDERWOOD, Tyler. Scrambled sets in shift spaces on a countable alphabet. In Proceedings of the American Mathematical Society. ISSN 0002-9939, 2016, vol. 144, no. 1, pp. 217-224.
    ASKRI, Ghassen. Li-Yorke chaos for dendrite maps with zero topological entropy and omega-limit sets. In Discrete and continuous dynamical systems. ISSN 1078-0947, 2017, vol. 37, no. 6, pp. 2957-2976.
    LI, Jian - OPROCHA, Piotr - YANG, Yini - ZENG, Tiaoying. On dynamics of graph maps with zero topological entropy. In Nonlinearity. ISSN 0951-7715, 2017, vol. 30, no. 12, pp. 4260-4276.
    EL ABDALAOUI, El Houcein - ASKRI, Ghassen - MARZOUGUI, Habib. Mobius disjointness conjecture for local dendrite maps. In Nonlinearity. ISSN 0951-7715, 2019, vol. 32, no. 1, pp. 285-300.
    KOSTIĆ, Marko. Chaos for linear operators and abstract differential equations. [Hauppauge] : Nova science publishers, 2020. 338 p. ISBN 978-153616896-9.
    LI, Jian - LIANG, Xianjuan - OPROCHA, Piotr. Graph maps with zero topological entropy and sequence entropy pairs. In Proceedings of the American mathematical society. ISSN 0002-9939, 2021, vol. 149, no. 11, pp. 4757-4770.
    FORYS-KRAWIEC, Magdalena - HANTAKOVA, Jana - OPROCHA, Piotr. On the structure of α-limit sets of backward trajectories for graph maps. In Discrete and continuous dynamical systems. ISSN 1078-0947, 2022, vol. 42, no. 3, pp. 1435-1463.
    ABDELLI, Hafedh - NAGHMOUCHI, Issam - REZGUI, Houssem Eddine. Local dendrite maps without periodic points. In Topology and its applications. ISSN 0166-8641, 2022, vol. 305, art. no. 107901, pp. 1-14.
    LI, Jian - OPROCHA, Piotr - ZHANG, Guohua. Quasi-graphs, zero entropy and measures with discrete spectrum. In Nonlinearity. ISSN 0951-7715, 2022, vol. 35, no. 3, pp. 1360-1379.
    Catal.org.BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici
    Databasexpca - PUBLIKAČNÁ ČINNOSŤ
    ReferencesPERIODIKÁ-Súborný záznam periodika
    unrecognised

    unrecognised

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.