- Can business cycles arise in a two-regional model with fixed exchange…
Number of the records: 1  

Can business cycles arise in a two-regional model with fixed exchange rates?

  1. SYS0082380
    LBL
      
    01621^^^^^2200253^^^450
    005
      
    20240621134458.7
    014
      
    $a 000273989100013 $2 WOS CC. CPCI-S
    014
      
    $a 2-s2.0-80053359554 $2 SCOPUS
    017
    70
    $a 10.2478/v10127-009-0032-7 $2 DOI
    100
      
    $a 20091014d2009 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a SK
    200
    1-
    $a Can business cycles arise in a two-regional model with fixed exchange rates? $d Môžu sa objaviť cykly v dvojregionálnom modeli s pevným výmenným kurzom? $f Peter Maličký, Rudolf Zimka $z slo
    330
    0-
    $a T. Asada zaviedol päťrozmerný model vývoja príjmu, fyzického kapitálu a toku peňazí v dvoch krajinách. My tento model študujeme a dokazujeme existenciu cyklu. The two-regional five dimensional model describing the development of income, capital stock and money stock, which was introduced by T. Asada is analysed. Theorem on the existence of business cycles is presented
    463
    -1
    $1 001 umb_un_cat*0311839 $1 011 $a 1210-3195 $1 011 $a 1338–9750 $1 200 1 $a Tatra Mountains mathematical publications $v Vol. 43, no. 2 (2009), pp. 123-135 $1 210 $a Bratislava $c Slovenská akadémia vied $d 2009 $1 710 11 $3 umb_un_auth*0291545 $a Differential and difference equations and applications 2008 $b konferencia $e Strečno $f 23.-27.06.2008
    606
    0-
    $3 umb_un_auth*0114065 $a dynamický model
    606
    0-
    $3 umb_un_auth*0160384 $a normálna forma lineárnych rovníc na invariantnej ploche
    606
    0-
    $3 umb_un_auth*0052206 $a rovnováha
    606
    0-
    $3 umb_un_auth*0160382 $a matica lineárnej transformácie
    606
    0-
    $3 umb_un_auth*0160383 $a vlastné hodnoty $X eigenvalues
    606
    0-
    $3 umb_un_auth*0132448 $a dynamical model
    606
    0-
    $3 umb_un_auth*0159768 $a equilibrium
    606
    0-
    $3 umb_un_auth*0160385 $a matrix of linear approximation
    606
    0-
    $3 umb_un_auth*0140814 $a eigenvalues
    606
    0-
    $3 umb_un_auth*0160387 $a normal form of differential equations on invariant surface
    606
    0-
    $3 umb_un_auth*0141619 $a bifurcation equations
    606
    0-
    $3 umb_un_auth*0197950 $a hospodárske cykly $X business cycles
    615
      
    $n 51 $a Matematika
    675
      
    $a 51
    700
    -0
    $3 umb_un_auth*0002697 $a Maličký $b Peter $f 1956- $p UMBFP10 $9 50 $4 070 $T Katedra matematiky
    701
    -0
    $3 umb_un_auth*0002825 $a Zimka $b Rudolf $f 1943- $p UMBEF05 $9 50 $4 070 $T Katedra kvantitatívnych metód a informačných systémov
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.