Number of the records: 1
On Wiman's theorem for graphs
SYS 0233835 005 20240513135841.7 014 $a 000358092000019 $2 WOS CC. SCIE 014 $a 000358092000019 $2 WOS CC. CPCI-S 014 $a 2-s2.0-84930085907 $2 SCOPUS 017 70
$a 10.1016/j.disc.2015.03.003 $2 DOI 100 $a 20160922 2015 m y slo 03 ba 101 0-
$a eng 102 $a NL 200 1-
$a On Wiman's theorem for graphs $f Alexander Mednykh, Ilya Mednykh 330 $a © 2015 Elsevier B.V.Abstract The aim of the paper is to find discrete versions of the Wiman theorem which states that the maximum possible order of an automorphism of a Riemann surface of genus g≥2 is 4g+2. The role of a Riemann surface in this paper is played by a finite connected graph. The genus of a graph is defined as the rank of its homology group. Let Z<inf>N</inf> be a cyclic group acting freely on the set of directed edges of a graph X of genus g≥2. We prove that N≤2g+2. The upper bound N=2g+2 is attained for any even g. In this case, the signature of the orbifold X/Z<inf>N</inf> is (0;2,g+1), that is X/Z<inf>N</inf> is a tree with two branch points of order 2 and g+1 respectively. Moreover, if N<2g+2, then N≤2g. The upper bound N=2g is attained for any g≥2. The latter takes a place when the signature of the orbifold X/Z<inf>N</inf> is (0;2,2g). 463 -1
$1 001 umb_un_cat*0297331 $1 011 $a 0012-365X $1 011 $a 1872-681X $1 200 1 $a Discrete Mathematics $v Vol. 338, no. 10 special issue (2015), pp. 1793-1800 $1 210 $a Amsterdam $c Elsevier B.V. $d 2015 $1 710 02 $3 umb_un_auth*0254307 $a Czech-Slovak international symposium on graph theory, combinatorics, algorithms and applications $b medzinárodné sympózium $d 7. $e Slovakia $f 07.-13.2013 606 0-
$3 umb_un_auth*0036218 $a matematika $X mathematics 606 0-
$3 umb_un_auth*0039537 $a grafy $X charts $X graphs 615 $n 51 $a Matematika 675 $a 51 700 -1
$a Mednykh $b Alexander $3 umb_un_auth*0120028 $p UMBFP10 $4 070 $9 75 $f 1953- $T Katedra matematiky 701 -1
$a Mednykh $b Ilya $3 umb_un_auth*0254410 $4 070 $9 25 801 -0
$a SK $b BB301 $g AACR2 $9 unimarc sk T85 $x existuji fulltexy
Number of the records: 1