- Realization of a spin-1/2 spatially anisotropic square lattice in a q…
Number of the records: 1  

Realization of a spin-1/2 spatially anisotropic square lattice in a quasi-two-dimensional quantum antiferromagnet Cu(en)(H2O)(2)SO4

  1. SYS0244532
    LBL
      
    ---naa--22--------450-
    005
      
    20240228095742.2
    014
      
    $a 000395987700003 $2 CCC
    014
      
    $a 000395987700003 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-85014517133 $2 SCOPUS
    017
    70
    $a 10.1103/PhysRevB.95.054436 $2 DOI
    100
      
    $a 20170518a2017 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a US
    200
    1-
    $a Realization of a spin-1/2 spatially anisotropic square lattice in a quasi-two-dimensional quantum antiferromagnet Cu(en)(H2O)(2)SO4 $f Lívia Lederová ... [et al.]
    330
      
    $a Theoretical and experimental studies of a quasi-two-dimensional quantum antiferromagnet Cu(en)(H2O)(2)SO4 (en = C2H8N2) were performed. ab initio calculations of exchange interactions confirmed that the system represents a realization of a spatially anisotropic zigzag square lattice. Corresponding quantum Monte Carlo calculations of thermodynamic quantities were realized and the results were applied in the analysis of experimental susceptibility, magnetization, and specific heat studied at temperatures ranging from nominally 300 mK up to 8 K and magnetic fields up to 14 T. The analysis of experimental results provided the estimates of intralayer exchange couplings, J/k(B) = 3.5 +/- 0.2 K and J (1) = 0.35 J. Theoretical analysis of spin symmetries in Cu( en)( H2O) 2SO4 structure predicted the presence of symmetric exchange anisotropies (out- of plane and in-plane spin anisotropy) and a spin-flop transition within the easy plane induced by the magnetic field applied along the easy axis. Isothermal magnetization measurements indicated the expected transition in the field 200 mT applied along the b axis which was finally identified as the easy axis lying within the easy plane bc. Magnetic phase diagrams with saturation fields about 6.5 T show nearly identical behavior in all studied directions. Differences appear only in weak magnetic fields as a result of the presence of weak exchange anisotropies approximate to 10(-3) J. The present analysis suggests that Cu( en)( H2O) 2SO4 can be a model system for exploring the interplay of quantum fluctuations, exchange anisotropies, and magnetic field in the two-dimensional lattice space.
    463
    -1
    $1 001 umb_un_cat*0293170 $1 011 $a 2469-9950 $1 011 $a 2469-9969 $1 200 1 $a Physical Review B $v Vol. 95, no. 5 (2017), pp. [1-2] $1 210 $a Maryland $c American Physical Society $d 2017
    606
    0-
    $3 umb_un_auth*0259327 $a quasi-two-dimensional quantum antiferromagnet
    606
    0-
    $3 umb_un_auth*0259328 $a square lattice
    606
    0-
    $3 umb_un_auth*0259330 $a two-dimensional lattice space
    606
    0-
    $3 umb_un_auth*0166854 $a magnetic anisotropy
    615
      
    $n 53 $a Fyzika
    675
      
    $a 53
    700
    -1
    $3 umb_un_auth*0259331 $a Lederová $b Lívia $9 12 $4 070
    701
    -1
    $3 umb_un_auth*0259332 $a Orendáčová $b Alžbeta $4 070 $9 15
    701
    -1
    $3 umb_un_auth*0188044 $a Chovan $b Jaroslav $p UMBFP06 $4 070 $9 12 $f 1972- $T Katedra fyziky
    701
    -1
    $3 umb_un_auth*0259333 $a Strečka $b Jozef $4 070 $9 12
    701
    -1
    $3 umb_un_auth*0259334 $a Verkholyak $9 5 $c Taras $4 070
    701
    -1
    $3 umb_un_auth*0259337 $a Tarasenko $b Robert $4 070 $9 5
    701
    -1
    $3 umb_un_auth*0259338 $a Legut $b Dominik $4 070 $9 12
    701
    -1
    $3 umb_un_auth*0167965 $a Sýkora $b Rudolf $4 070 $9 5
    701
    -1
    $3 umb_un_auth*0259339 $a Čižmár $b Erik $4 070 $9 7
    701
    -1
    $3 umb_un_auth*0259340 $a Tkáč $b Vladimír $4 070 $9 5
    701
    -1
    $3 umb_un_auth*0259341 $a Orendáč $b Martin $4 070 $9 5
    701
    -1
    $3 umb_un_auth*0259342 $a Feher $b Alexander $4 070 $9 5
    T85
      
    $x existuji fulltexy
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.