- Causal mediation analysis with double machine learning
Number of the records: 1  

Causal mediation analysis with double machine learning

  1. SYS0308335
    LBL
      
    -----naa--22--------450-
    005
      
    20240506135405.6
    014
      
    $a 000797638700002 $2 CCC
    014
      
    $a 000791162700001 $2 WOS CC. SCIE
    014
      
    $a 000791162700001 $2 WOS CC. SSCI
    014
      
    $a 2-s2.0-85131748425 $2 SCOPUS
    017
    70
    $a 10.1093/ectj/utac003 $2 DOI
    035
      
    $a biblio/480632 $2 CREPC2
    100
      
    $a 20220519d2022 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a GB
    200
    1-
    $a Causal mediation analysis with double machine learning $f Helmut Farbmacher ... [et al.]
    330
      
    $a This paper combines causal mediation analysis with double machine learning for a data-driven control of observed confounders in a high-dimensional setting. The average indirect effect of a binary treatment and the unmediated direct effect are estimated based on efficient score functions, which are robust with respect to misspecifications of the outcome, mediator, and treatment models. This property is key for selecting these models by double machine learning, which is combined with data splitting to prevent overfitting. We demonstrate that the effect estimators are asymptotically normal and n−1/2-consistent under specific regularity conditions and investigate the finite sample properties of the suggested methods in a simulation study when considering lasso as machine learner. We also provide an empirical application to the US National Longitudinal Survey of Youth, assessing the indirect effect of health insurance coverage on general health operating via routine checkups as mediator, as well as the direct effect.
    463
    -1
    $1 001 umb_un_cat*0308418 $1 011 $a 1368-4221 $1 011 $a 1368-423X $1 200 1 $a The Econometrics Journal $v Vol. 25, no. 2 (2022), pp. 277-300 $1 210 $a Londýn $c Royal Economic Society $d 2022
    606
    0-
    $3 umb_un_auth*0037836 $a matematické metódy $X mathematical methods
    606
    0-
    $3 umb_un_auth*0000778 $a ekonomika $X economics
    606
    0-
    $3 umb_un_auth*0248297 $a strojové učenie $X machine learning
    606
    0-
    $3 umb_un_auth*0292558 $a analýza kauzálneho sprostredkovania $X causal mediation analysis
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0292560 $a Farbmacher $b Helmut $4 070 $9 20
    701
    -1
    $3 umb_un_auth*0249133 $a Huber $b Martin $f 1980- $9 20 $4 070
    701
    -1
    $3 umb_un_auth*0249128 $a Lafférs $b Lukáš $f 1986- $p UMBFP10 $9 20 $4 070 $T Katedra matematiky
    701
    -1
    $3 umb_un_auth*0292561 $a Langen $b Henrika $4 070 $9 20
    701
    -1
    $3 umb_un_auth*0292562 $a Spindler $b Martin $4 070 $9 20
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://academic.oup.com/ectj/article/25/2/277/6517682 $a Link na plný text
    T85
      
    $x existuji fulltexy
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.