Počet záznamov: 1
Interior periodic points of a Lotka–Volterra map
Názov Interior periodic points of a Lotka–Volterra map Súbež.n. Vnútorné periodické body Lotkovho Volterrovho zobrazenia Aut.údaje Peter Maličký Autor Maličký Peter 1956- (100%) UMBFP10 - Katedra matematiky
Zdroj.dok. Journal of Difference Equations and Applications. Vol. 18, no. 4 (2012), pp. 553-567. - Abingdon : Taylor & Francis Group, 2012 Kľúč.slová periodické body Jacobiho matica - Jacobian matrix sedlový pevný bod itinerár Brouwerova veta periodic point saddle fixed point itinerary Brouwer theorem Jazyk dok. angličtina Krajina Veľká Británia Systematika 514 Anotácia Pre rovinný trojuholník s vrcholmi [0,0], [4,0] a [0,4] skúmame transformáciu F, ktorá zobrazuje bod[x,y] do bodu [xy,x(4-x-y)]. Dokazujeme existenciu vnútorných periodických bodov s periódou n väčšou než 3. Jedna periodická orbita s periódou 6 je vyjadrená explicitne. Dokazujeme tiež, že pre každý dolný sedlový periodický bod existuje vnútorný periodický bod s tým istým itinerárom (vzhľadom na rozklad daný zvislou strednou priečkou). For the plain triangle with vertices [0,0], [4,0] and [0,4] we consider transform F, which maps the point [x,y] to point [xy,x(4-x-y)]. We prove the existence of interior periodic points of periods n greater than 3. One of the periodic orbits of period 6 is given explicitly. We also prove that for any lower periodic saddle point, there is an interior periodic point with the same itinerary (with respect to the natural decomposition of D given by the vertical middle line) Kategória publikačnej činnosti ADC Číslo archívnej kópie 23322 Kategória ohlasu MUKHAMEDOV, Farrukh - ABDUGANIEV, A. On pure quasi-quantum quadratic operators of M-2(C). In Open systems & information dynamics. ISSN 1230-1612, 2013, vol. 20, no. 4, article no. 1350018.
BEL'MESOVA, S. S. - EFREMOVA, L. S. On the concept of integrability for discrete dynamical systems. Investigation of wandering points of some trace map. In Springer proceedings in mathematics and statistics : 4th international workshop on nonlinear maps and their applications, NOMA 2013, Zaragoza, 3rd September - 4th September 2013. New York : Springer, 2015. ISBN 978-331912327-1, pp. 127-158.
BALIBREA, Francisco. Some problems connected with the thue-morse and Fibonacci sequences. In Advances in dynamical systems and control. ISSN 2198-4182, 2016, vol. 69, pp. 273-293.
Katal.org. BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici Báza dát xpca - PUBLIKAČNÁ ČINNOSŤ Odkazy PERIODIKÁ-Súborný záznam periodika nerozpoznaný
Počet záznamov: 1