Počet záznamov: 1
On Wiman's theorem for graphs
Názov On Wiman's theorem for graphs Aut.údaje Alexander Mednykh, Ilya Mednykh Autor Mednykh Alexander 1953- (75%) UMBFP10 - Katedra matematiky
Spoluautori Mednykh Ilya (25%)
Zdroj.dok. Discrete Mathematics. Vol. 338, no. 10 special issue (2015), pp. 1793-1800. - Amsterdam : Elsevier B.V., 2015 ; Czech-Slovak international symposium on graph theory, combinatorics, algorithms and applications medzinárodné sympózium Kľúč.slová matematika - mathematics grafy - charts - graphs Jazyk dok. angličtina Krajina Holandsko Systematika 51 Anotácia © 2015 Elsevier B.V.Abstract The aim of the paper is to find discrete versions of the Wiman theorem which states that the maximum possible order of an automorphism of a Riemann surface of genus g≥2 is 4g+2. The role of a Riemann surface in this paper is played by a finite connected graph. The genus of a graph is defined as the rank of its homology group. Let ZinfN/inf be a cyclic group acting freely on the set of directed edges of a graph X of genus g≥2. We prove that N≤2g+2. The upper bound N=2g+2 is attained for any even g. In this case, the signature of the orbifold X/ZinfN/inf is (0;2,g+1), that is X/ZinfN/inf is a tree with two branch points of order 2 and g+1 respectively. Moreover, if N<2g+2, then N≤2g. The upper bound N=2g is attained for any g≥2. The latter takes a place when the signature of the orbifold X/ZinfN/inf is (0;2,2g). Kategória publikačnej činnosti AFC Číslo archívnej kópie 36748 Katal.org. BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici Báza dát xpca - PUBLIKAČNÁ ČINNOSŤ Odkazy PERIODIKÁ-Súborný záznam periodika nerozpoznaný
Počet záznamov: 1