Počet záznamov: 1  

Cayley snarks and almost simple groups

  1. SYS0194707
    LBL
      
    -----naa--22--------450-
    005
      
    20240326091741.1
    014
      
    $a 000172156800006 $2 CCC
    014
      
    $a 000172156800006 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-0039304075 $2 SCOPUS
    017
    70
    $a 10.1007/s004930100014 $2 DOI
    100
      
    $a 20140218d2001 m y-slo-03 ----ba
    101
    0-
    $a eng
    102
      
    $a US
    200
    1-
    $a Cayley snarks and almost simple groups $f R. Nedela, M. Skoviera
    330
      
    $a A Cayley snark is a cubic Cayley graph which is not 3-edge-colourable. In the paper we discuss the problem of the existence of Cayley snarks. This problem is closely related to the problem of the existence of non-hamiltonian Cayley graphs and to the question whether every Cayley graph admits a nowhere-zero 4-flow. So far, no Cayley snarks have been found. On the other hand, we prove that the smallest example of a Cayley snark, if it exists, comes either from a non-abelian simple group or from a group which has a single non-trivial proper normal subgroup. The subgroup must have index two and must be either non-abelian simple or the direct product of two isomorphic non-abelian simple groups.
    463
    -1
    $1 001 umb_un_cat*0327068 $1 011 $a 0209-9683 $1 011 $a 1439-6912 $1 200 1 $a Combinatorica $v Vol. 21, no. 4 (2001), pp. 583-590 $1 210 $a Heidelberg $c Springer-Verlag $d 1981-
    606
    0-
    $3 umb_un_auth*0036218 $a matematika $X mathematics
    606
    0-
    $3 umb_un_auth*0039537 $a grafy $X charts $X graphs
    615
      
    $n 51 $a Matematika $2 konspekt
    675
      
    $a 51 $v 3. $z slo
    700
    -0
    $3 umb_un_auth*0001645 $a Nedela $b Roman $p UMBFP12 $4 070 $9 50 $f 1960- $T Inštitút matematiky a informatiky
    701
    -0
    $3 umb_un_auth*0022262 $a Škoviera $b Martin $4 070 $9 50
    801
    -0
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
Počet záznamov: 1  

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.