Počet záznamov: 1
Cayley snarks and almost simple groups
SYS 0194707 LBL -----naa--22--------450- 005 20240326091741.1 014 $a 000172156800006 $2 CCC 014 $a 000172156800006 $2 WOS CC. SCIE 014 $a 2-s2.0-0039304075 $2 SCOPUS 017 70
$a 10.1007/s004930100014 $2 DOI 100 $a 20140218d2001 m y-slo-03 ----ba 101 0-
$a eng 102 $a US 200 1-
$a Cayley snarks and almost simple groups $f R. Nedela, M. Skoviera 330 $a A Cayley snark is a cubic Cayley graph which is not 3-edge-colourable. In the paper we discuss the problem of the existence of Cayley snarks. This problem is closely related to the problem of the existence of non-hamiltonian Cayley graphs and to the question whether every Cayley graph admits a nowhere-zero 4-flow. So far, no Cayley snarks have been found. On the other hand, we prove that the smallest example of a Cayley snark, if it exists, comes either from a non-abelian simple group or from a group which has a single non-trivial proper normal subgroup. The subgroup must have index two and must be either non-abelian simple or the direct product of two isomorphic non-abelian simple groups. 463 -1
$1 001 umb_un_cat*0327068 $1 011 $a 0209-9683 $1 011 $a 1439-6912 $1 200 1 $a Combinatorica $v Vol. 21, no. 4 (2001), pp. 583-590 $1 210 $a Heidelberg $c Springer-Verlag $d 1981- 606 0-
$3 umb_un_auth*0036218 $a matematika $X mathematics 606 0-
$3 umb_un_auth*0039537 $a grafy $X charts $X graphs 615 $n 51 $a Matematika $2 konspekt 675 $a 51 $v 3. $z slo 700 -0
$3 umb_un_auth*0001645 $a Nedela $b Roman $p UMBFP12 $4 070 $9 50 $f 1960- $T Inštitút matematiky a informatiky 701 -0
$3 umb_un_auth*0022262 $a Škoviera $b Martin $4 070 $9 50 801 -0
$a SK $b BB301 $g AACR2 $9 unimarc sk T85 $x existuji fulltexy
Počet záznamov: 1