Košík

  Odznačiť vybrané:   0
  1. SYS0307300
    LBL
      
    -----naa--22--------450-
    005
      
    20240306131651.4
    014
      
    $a 000770767700001 $2 WOS CC. SCIE
    014
      
    $a 000770767700001 $2 CCC
    014
      
    $a 2-s2.0-85126752199 $2 SCOPUS
    017
    70
    $a 10.1007/s00012-022-00769-2 $2 DOI
    035
      
    $a biblio/473831 $2 CREPC2
    100
      
    $a 20220413d2022 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a CH
    200
    1-
    $a Canonical extensions of lattices are more than perfect $f Andrew P. K. Craig, Maria J. Gouveia, Miroslav Haviar
    330
      
    $a In a paper published in 2015, we introduced TiRS graphs and TiRS frames to create a new natural setting for duals of canonical exten sions of lattices. Here, we firstly introduce morphisms of TiRS structures and put our correspondence between TiRS graphs and TiRS frames into a full categorical framework. We then answer Problem 2 from our 2015 paper by characterising the perfect lattices that are dual to TiRS frames (and hence TiRS graphs). We introduce a new subclass of perfect lattices called PTi lattices and show that the canonical extensions of lattices are PTi lattices, and so are ‘more’ than just perfect lattices. We illustrate the correspondences between classes of our newly-described PTi lattices and classes of TiRS graphs by examples. We conclude by outlining a direction for future research.
    463
    -1
    $1 001 umb_un_cat*0307680 $1 011 $a 0002-5240 $1 011 $a 1420-8911 $1 200 1 $a Algebra Universalis $v Vol. 83, no. 2 (2022), pp. [1-17] $1 210 $a Basel $c Springer Nature Switzerland AG $d 2022
    606
    0-
    $3 umb_un_auth*0121507 $a kanonické rozšírenia
    606
    0-
    $3 umb_un_auth*0036218 $a matematika $X mathematics
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0226852 $a Craig $b Andrew, P. K. $4 070 $9 34
    701
    -1
    $3 umb_un_auth*0183298 $a Gouveia $b Maria Joao $4 070 $9 33
    701
    -0
    $a Haviar $b Miroslav $p UMBFP10 $4 070 $9 33 $3 umb_un_auth*0002686 $f 1965- $T Katedra matematiky
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://link.springer.com/article/10.1007/s00012-022-00769-2 $a Link na plný text
    T85
      
    $x existuji fulltexy
  2. SYS0193012
    LBL
      
    -----naa--22--------450-
    005
      
    20240514105037.4
    014
      
    $a 000327170400004 $2 CCC
    014
      
    $a 000327170400004 $2 WOS CC. SCIE
    014
      
    $a 000327170400004 $2 WOS CC. CPCI-S
    014
      
    $a 2-s2.0-84886725504 $2 SCOPUS
    017
    70
    $a 10.1016/j.fss.2013.07.024 $2 DOI
    100
      
    $a 20140117d2013 m y-slo-03 ----ba
    101
    0-
    $a eng
    102
      
    $a NL
    200
    1-
    $a Variation on a Poincaré theorem $f Beloslav Riečan
    463
    -1
    $1 001 umb_un_cat*0290820 $1 011 $a 0165-0114 $1 011 $a 1872-6801 $1 200 1 $a Fuzzy Sets and Systems $v Vol. 232 (2013), pp. 39-45 $1 210 $a Amsterdam $c Elsevier B.V. $d 2013
    600
    -1
    $3 umb_un_auth*0134417 $a Poincaré $b Jules Henri $f 1854-1912
    606
    0-
    $3 umb_un_auth*0160397 $a Poincaré recurrence theorem
    606
    0-
    $3 umb_un_auth*0048564 $a variácie $X variations
    615
      
    $n 51 $a Matematika $2 konspekt
    675
      
    $a 51 $v 3. $z slo
    700
    -0
    $3 umb_un_auth*0003068 $a Riečan $b Beloslav $f 1936-2018 $p UMBFP10 $9 100 $4 070 $T Katedra matematiky
    801
    -0
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
  3. SYS0114048
    LBL
      
    00542nx^^^22001813^^45
    005
      
    20170814110925.7
    250
      
    $a intuitionistic fuzzy sets
    450
      
    $7 ba $5 z
  4. SYS0170071
    LBL
      
    00542nx^^^22001813^^45
    005
      
    20180130143843.9
    250
      
    $a synchronizácia hospodárskych cyklov
    450
      
    $7 ba $5 z

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.