Košík

  Odznačiť vybrané:   0
  1. SYS0338935
    LBL
      
    00000nam$$22^^^^^$$$450$
    005
      
    20250603135242.9
    010
      
    $a 978-80-8230-282-3 $b brož.
    100
      
    $a 20250603a2024łłłłm--y0sloc0103----ba
    101
    0-
    $a slo $c eng
    102
      
    $a SK
    106
      
    $a r
    200
    1-
    $a Existenciálna fyzika $e vedecký sprievodca najväčšími otázkami života $f Sabine Hossenfelder $g preklad: Marián Hamada
    205
      
    $a 1. vyd.
    210
      
    $a Bratislava $c N Press $d 2024
    215
      
    $a 246 s. $d 22 cm
    320
      
    $a Poznámky. Register
    606
    0-
    $3 umb_un_auth*0000711 $a filozofia fyziky $X philosophy of physics
    606
    0-
    $3 umb_un_auth*0038406 $a kozmológia $X cosmology
    606
    0-
    $3 umb_un_auth*0047650 $a moderná fyzika $X modern physics
    606
    0-
    $3 umb_un_auth*0038402 $a veda a viera $X science and belief $X science and faith
    608
      
    $3 umb_un_auth*0272197 $a populárno-náučné publikácie $X popular works
    615
      
    $n 53 $a Fyzika
    675
      
    $a 53:1
    675
      
    $a 113/119
    675
      
    $a 524.8
    675
      
    $a 001:165.43
    700
    -1
    $3 umb_un_auth*0311527 $a Hossenfelder $b Sabine $f 1976- $4 070
    702
    -1
    $3 umb_un_auth*0311528 $a Hamada $b Marián $f 1985- $4 730
    801
    -0
    $a SK $b BB301 $c 20250603 $g AACR2
    T85
      
    $x existuji fulltexy
  2. SYS0262745
    LBL
      
    00542nx^^^22001813^^45
    005
      
    20171020075506.4
    100
      
    $a 20171020asloy0103 ba
    152
      
    $a AACR2
    200
    -1
    $a Kasinec $b Rudolf
    801
    -0
    $a SK $b BB301
  3. SYS0250723
    LBL
      
    ---naa--22--------450-
    005
      
    20240627111327.8
    014
      
    $a 000172074200080 $2 CCC
    014
      
    $a 000172074200080 $2 WOS CC. SCIE
    017
    70
    $2 DOI
    100
      
    $a 20170921 2001 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a US
    200
    1-
    $a T-c for trapped dilute Bose gases $e a second-order result $f Peter Arnold, Boris Tomášik
    330
      
    $a For some time, the theoretical result for the transition temperature of a dilute three-dimensional Bose gas in an arbitrarily wide harmonic trap has been known to first order in the interaction strength. We extend that result to second order. The first-order result for a gas trapped in a harmonic potential can be computed in mean-field theory (in contrast to the first-order result for a uniform gas, which cannot). We show that, at second order, perturbation theory suffices for relating the transition temperature to the chemical potential at the transition, but the chemical potential is nonperturbative at the desired order. The necessary information about the chemical potential can be extracted, however, from recent lattice simulations of uniform Bose gases.
    463
    -1
    $1 001 umb_un_cat*0299861 $1 011 $a 2469-9926 $1 011 $a 2469-9934 $1 200 1 $a Physical Review A $e covering atomic, molecular, and optical physics and quantum information $v Vol. 64, no. 5 (2001), pp. [1-21] $1 210 $a Maryland $c American Physical Society $d 2001
    606
    0-
    $3 umb_un_auth*0170471 $a condensation
    606
    0-
    $3 umb_un_auth*0000019 $a fyzika $X physics
    615
      
    $n 53 $a Fyzika
    675
      
    $a 53
    700
    -1
    $3 umb_un_auth*0261664 $a Arnold $b Peter $9 50 $4 070
    701
    -1
    $3 umb_un_auth*0120276 $a Tomášik $b Boris $p UMBFP06 $4 070 $9 50 $f 1972- $T Katedra fyziky
    801
    -0
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.