Košík

  Odznačiť vybrané:   0
  1. SYS0045774
    LBL
      
    $$$$$nam$$22$$$$$$$$450$
    005
      
    20190812101816.4
    010
      
    $b viaz. $d 28,50 Sk
    100
      
    $a 20070910d1964łłłłm$$y0sloc0103$$$$ba
    101
    0-
    $a cze $c ger
    102
      
    $a CS
    106
      
    $a r
    200
    1-
    $a Bertolt Brecht $f Bernhard Reich
    205
      
    $a 1. vyd.
    210
      
    $a Praha $c Orbis $d 1964
    215
      
    $a 276 s. $c fotogr. $d 20 cm
    600
    -1
    $3 umb_un_auth*0005708 $a Brecht $b Bertolt $c nemecký spisovateľ, divadelník, dramatik, režisér a teoretik drámy $f 1898 - 1956
    606
    0-
    $3 umb_un_auth*0266028 $a nemecká dráma $X German drama
    606
    0-
    $3 umb_un_auth*0037658 $a biografie $X biography $X biographies
    615
      
    $n 929 $a Biografie $2 konspekt
    675
      
    $a 821.112.2.09 $v 3. $z slo
    675
      
    $a 929
    700
    -1
    $3 umb_un_auth*0130150 $a Reich $b Bernhard $4 070
    702
    -0
    $3 umb_un_auth*0029556 $a Rak $b Ján $f 1915-1969 $4 730
    801
    -0
    $a SK $b BB301 $g AACR2 $9 unimarc sk
  2. SYS0218463
    LBL
      
    00542nx^^^22001813^^45
    005
      
    20130625093718.0
    100
      
    $a 20130625asloy0103 ba
    152
      
    $a AACR2
    200
    -1
    $a Diviaková $b Andrea
    801
    -0
    $a SK $b BB301
  3. SYS0280101
    LBL
      
    00715^^^^^2200217^^^450
    005
      
    20240312151231.8
    014
      
    $a 2-s2.0-85073692525 $2 SCOPUS
    017
    70
    $a 10.22323/1.336.0256 $2 DOI
    035
      
    $a biblio/184551 $2 CREPC2
    100
      
    $a 20200116d2018 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a IT
    200
    1-
    $a Evolution of higher moments of multiplicity distribution $f Radka Sochorová, Boris Tomášik
    330
      
    $a © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). Evolution of a multiplicity distribution can be described with the help of master equation. We first look at 3rd and 4th factorial moments of multiplicity distributions and derive their equilibrium values. From them central moments and other ratios can be calculated. We study the master equation for a fixed temperature, because we want to know how fast different moments of the multiplicity distribution approach their equilibrium value. Then we investigate the situation in which the temperature of the system decreases. We find out that in the non-equilibrium state, higher factorial moments differ more from their equilibrium values than the lower moments and that the behaviour of a combination of the central moments depends on the combination we choose.
    463
    -1
    $1 001 umb_un_cat*0280396 $1 011 $a 1824-8039 $1 200 1 $a PoS proceedings of science $e 13th Quark Confinement and the Hadron Spectrum $v Vol. 336 (2018), pp. 1-8 $1 210 $a Trieste $c Sissa Medialab $d 2018 $1 710 11 $3 umb_un_auth*0279727 $a Quark confinement and the hadron spectrum $d 13. $e Maynooth University, Ireland $f 31.07.-06.08.2018
    606
    0-
    $3 umb_un_auth*0000019 $a fyzika $X physics
    606
    0-
    $3 umb_un_auth*0112095 $a fluktuácie
    606
    0-
    $3 umb_un_auth*0175890 $a zrážky ťažkých iónov
    606
    0-
    $3 umb_un_auth*0000335 $a výskumy
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0279710 $a Sochorová $b Radka $4 070 $9 50
    701
    -1
    $3 umb_un_auth*0120276 $a Tomášik $b Boris $p UMBFP06 $4 070 $9 50 $f 1972- $T Katedra fyziky
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
    0-
    $u https://pos.sissa.it/336/256 $a Link na zdrojový dokument
    T85
      
    $x existuji fulltexy
  4. SYS0172968
    LBL
      
    -----naa--22--------450-
    005
      
    20240121190936.0
    100
      
    $a 20121106d2004 m y-slo-03 ----ba
    101
    0-
    $a eng
    102
      
    $a IT
    200
    1-
    $a The decomposition of tensor spaces with almost complex structure $f Lenka Lakomá, Marek Jukl
    463
    -1
    $1 001 umb_un_cat*0311858 $1 011 $a 0009-725X $1 011 $a 1973-4409 $1 200 1 $a Rendiconti del Circolo Matematico di Palermo $e Series 2 $v Supplemento no. 72 (2004), pp. 145-150 $1 210 $a Palermo $c Circolo Matematico di Palermo $d 2004 $1 710 11 $3 umb_un_auth*0294020 $a Proceedings of the 23rd Winter School "Geometry and Physics" $b konferencia $d 23. $e Srní, Czech Republic $f 18th-25th January 2003
    606
    0-
    $3 umb_un_auth*0035648 $a decomposition
    606
    0-
    $3 umb_un_auth*0210753 $a tensor spaces
    606
    0-
    $3 umb_un_auth*0210754 $a almost complex structures
    615
      
    $n 51 $a Matematika $2 konspekt
    675
      
    $a 51 $v 3. $z slo
    700
    -1
    $3 umb_un_auth*0210808 $a Lakomá $b Lenka $4 070 $9 50
    701
    -1
    $3 umb_un_auth*0210162 $a Jukl $b Marek $4 070 $9 50
    801
    -0
    $a SK $b BB301 $g AACR2 $9 unimarc sk
  5. SYS0079798
    LBL
      
    00544nam^^2200193^i^4500
    005
      
    20230125131216.9
    010
      
    $d 1.33 Euro
    011
      
    $a 0139-6668
    100
      
    $a 19980605d1970slo0103
    101
    0-
    $a slo
    102
      
    $a -CS
    106
      
    $a r
    110
      
    $a $$$$$ $$$$
    200
    1-
    $a Vlastivedný časopis $e časopis pre vlastivednú prácu kultúrnu históriu pamiatky a múzea
    210
      
    $a Bratislava $c Obzor $d 1970
    215
      
    $a 192 s.
    301
      
    $a Chýba č. 2
    461
    -1
    $1 001 umb_un_cat*0054574 $1 200 1 $a Vlastivedný časopis $1 210 $a Bratislava $c Obzor
    606
    0-
    $3 umb_un_auth*0036320 $a časopisy $X journals
    606
    0-
    $3 umb_un_auth*0039007 $a vlastiveda $X history and geography $X homeland studies
    615
      
    $n 908 $a Štúdium oblastí a lokalít
    675
      
    $a 908.437.6:05
    801
      
    $b BB301 $g AACR2
  6. SYS0295814
    LBL
      
    00542nx^^^22001813^^45
    005
      
    20221207081918.0
    100
      
    $a 20221207asloy0103 ba
    152
      
    $a AACR2
    210
    11
    $a The Poprad economic and management forum 2022 (PEMF 2022) $b medzinárodná vedecká konfeerncia $c current trends and challenges in the field of management of organisations $d 4. $e Poprad $f 10.-11.11.2022
    801
    -0
    $a SK $b BB301 $c 2003

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.