Košík

  Odznačiť vybrané:   0
  1. SYS0323551
    LBL
      
    -----naa--22--------450-
    005
      
    20231020091125.7
    017
    70
    $a 10.4236/jfrm.2023.122010 $2 DOI
    035
      
    $a biblio/1059001 $2 CREPC2
    100
      
    $a 20231018d2023 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a US
    200
    1-
    $a Measurement of income inequality and its determinants in district Dir lower $f Abdul Waris, Sher Khan ... [et al.]
    330
      
    $a The objective of the present study was to measure income inequality and to analyze determinants of income inequality of the households in the study area conducted in three villages Madinaabad, Shamshikhan, and Ziarat were randomly selected from the Lower Dir district. Data were randomly collected from 82 sample households with the help of an interview schedule. Ginicoefficient, Palma ratio was used to measure income inequality in the selected area while Lorenz curve was used to represent income and inequality. A logistic regression model was used for analyzing the determinants of income inequality of the households in the research area. Results of the study revealed that the value of Gini-coefficient for villages Madinaabad, Shamshikhan, Ziarat and for the overall area were 0.22, 0.30, 0.34, and 0.31 while Palma ratio for villages Madinaabad, Shamshikhan, Ziarat, and for the overall area were 0.63, 0.88, 1.14 and 1.06, respectively. Results of binary logistic regression showed that the odds ratio of age, education and the number of dependents was 1.084, 0.862, and 0.306, respectively, which showed that income inequality increases with the increase of one year of age by 8.4 percent. In contrast, education and earners decrease income inequality in the research area. Based on research findings, providing quality education and proper use of land resources can reduce income inequality in the study area.
    463
    -1
    $1 001 umb_un_cat*0323570 $1 011 $a 2167-9533 $1 011 $a 2167-9541 $1 200 1 $a Journal of financial risk management $v Vol. 12, no. 2 (2023), pp. 180-202 $1 210 $a Irvine $c SCIRP $d 2023
    606
    0-
    $3 umb_un_auth*0041444 $a logistická regresia $X logistic regression
    606
    0-
    $3 umb_un_auth*0158897 $a nerovnosť príjmového rozdelenia
    606
    0-
    $3 umb_un_auth*0122786 $a Lorenzova krivka $X Lorenz curve
    606
    0-
    $3 umb_un_auth*0042481 $a domácnosť $X household
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0300984 $a Waris $b Abdul $4 070 $9 20
    701
    -1
    $3 umb_un_auth*0298754 $a Khan $b Sher $4 070 $9 20
    701
    -1
    $3 umb_un_auth*0300985 $a Urrahman $b Atif $4 070 $9 20
    701
    -0
    $3 umb_un_auth*0010684 $a Hronec $b Martin $p UMBEF02 $4 070 $9 20 $f 1976- $T Katedra ekonómie
    702
    -1
    $3 umb_un_auth*0209202 $a Šuplata $b Marian $4 070 $9 20 $f 1976-
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://www.scirp.org/journal/paperinformation.aspx?paperid=125657 $a Link na plný text
    T85
      
    $x existuji fulltexy
  2. SYS0270423
    LBL
      
    00893^^^^^2200277^^^450
    005
      
    20240509123026.1
    014
      
    $a 000459846300033 $2 CCC
    014
      
    $a 000459846300033 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-85059739404 $2 SCOPUS
    017
    70
    $a 10.1016/j.ins.2018.12.090 $2 DOI
    035
      
    $a biblio/122160 $2 CREPC2
    100
      
    $a 20190523d2019 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a US
    200
    1-
    $a Mixture functions and their monotonicity $f Jana Špirková ... [et al.]
    330
      
    $a We consider mixture functions, which are a type of weighted averages for which the corresponding weights are calculated by means of appropriate continuous functions of their inputs. In general, these mixture function need not be monotone increasing. For this reason we study sufficient conditions to ensure standard, weak and directional monotonicity for specific types of weighting functions. We also analyze directional monotonicity when differentiability is assumed. (C) 2019 Elsevier Inc. All rights reserved.
    463
    -1
    $1 001 umb_un_cat*0288023 $1 200 1 $a Information sciences $v Vol. 481, (2019), pp. 520-549 $1 210 $a New York $c Elsevier Science Ltd. $d 2019 $1 011 $a 0020-0255 $1 011 $a 1872-6291
    606
    0-
    $3 umb_un_auth*0167357 $a aggregation functions
    606
    0-
    $3 umb_un_auth*0236986 $a mixture functions
    606
    0-
    $3 umb_un_auth*0118278 $a monotonicity
    606
    0-
    $3 umb_un_auth*0240659 $a weak monotonicity
    606
    0-
    $3 umb_un_auth*0266470 $a directional monotonicity
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    615
      
    $n 334 $a Formy organizácie a spolupráce v ekonomike
    675
      
    $a 334
    700
    -0
    $3 umb_un_auth*0027767 $a Špirková $b Jana $f 1962- $p UMBEF05 $9 70 $4 070 $T Katedra kvantitatívnych metód a informačných systémov
    701
    -1
    $3 umb_un_auth*0228886 $a Beliakov $b Gleb $4 070 $9 10
    701
    -1
    $3 umb_un_auth*0145317 $a Bustince $b Humberto $4 070 $9 10
    701
    -1
    $3 umb_un_auth*0275262 $a Fernandez $b Javier $4 070 $9 10
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
  3. SYS0100502
    LBL
      
    00984^^^^^2200265^^^450
    005
      
    20240514134201.5
    014
      
    $a 000279524300056 $2 CCC
    014
      
    $a 000279524300056 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-77955768084 $2 SCOPUS
    017
    70
    $a 10.1016/j.nonrwa.2009.10.003 $2 DOI
    100
      
    $a 20101004d2010 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a GB
    200
    1-
    $a On the existence of business cycles in Asada's two-regional model $f Peter Maličký, Rudolf Zimka
    463
    -1
    $1 001 umb_un_cat*0309979 $1 011 $a 1468-1218 $1 200 1 $a Nonlinear Analysis $e Real World Applications $v Vol. 11, no. 4 (2010), pp. 2787-2795 $1 210 $a Oxford $c Elsevier Ltd. $d 2010
    606
    0-
    $3 umb_un_auth*0132448 $a dynamical model
    606
    0-
    $3 umb_un_auth*0159768 $a equilibrium
    606
    0-
    $3 umb_un_auth*0160385 $a matrix of linear approximation
    606
    0-
    $3 umb_un_auth*0140814 $a eigenvalues
    606
    0-
    $3 umb_un_auth*0160387 $a normal form of differential equations on invariant surface
    606
    0-
    $3 umb_un_auth*0141619 $a bifurcation equations
    606
    0-
    $3 umb_un_auth*0197950 $a hospodárske cykly $X business cycles
    606
    0-
    $3 umb_un_auth*0141617 $a Asada's two-regional model
    615
      
    $n 51 $a Marematika
    675
      
    $a 517.9
    700
    -0
    $3 umb_un_auth*0002697 $a Maličký $b Peter $f 1956- $p UMBFP10 $9 50 $4 070 $T Katedra matematiky
    701
    -0
    $3 umb_un_auth*0002825 $a Zimka $b Rudolf $f 1943- $p UMBEF05 $9 50 $4 070 $T Katedra kvantitatívnych metód a informačných systémov
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
  4. SYS0251710
    LBL
      
    00693^^^^^2200193^^^450
    005
      
    20220620084822.7
    100
      
    $a 20171025d2017 m y slo 03 ba
    101
    0-
    $a slo
    102
      
    $a SK
    200
    1-
    $a Úroveň vybraných pohybových schopností žiakov základných škôl v Banskej Bystrici $f Zuzana Pupišová, Ján Pavlík
    463
    -1
    $1 001 umb_un_cat*0251737 $1 010 $a 978-80-558-1179-6 $1 200 1 $a Šport a rekreácia 2017 $e zborník vedeckých prác $g rec. Karol Görner, Pavol Bartík ... [et al.] $v S. 152-157 $1 205 $a 1. vyd. $1 210 $a Nitra $c Univerzita Konštantína Filozofa v Nitre $d 2017 $1 215 $a 196 s. $1 702 0 $3 umb_un_auth*0002662 $a Görner $b Karol $4 675 $f 1959- $1 702 0 $3 umb_un_auth*0002565 $a Bartik $b Pavol $f 1959- $4 675 $1 702 0 $3 umb_un_auth*0002594 $a Michal $b Jiří $4 675 $f 1961- $1 702 1 $3 umb_un_auth*0002777 $a Novotná $b Nadežda $f 1954- $4 675 $1 702 0 $3 umb_un_auth*0019148 $a Lednický $b Anton $4 675 $1 702 1 $3 umb_un_auth*0262910 $a Koštiaľ $b Ján $4 675 $1 702 0 $3 umb_un_auth*0029524 $a Halmová $b Nora $4 675 $1 702 1 $3 umb_un_auth*0242277 $a Kanásová $b Janka $4 675 $1 702 1 $3 umb_un_auth*0098021 $a Šutka $b Vladimír $4 675 $1 702 1 $3 umb_un_auth*0262911 $a Vadašová $b Bibiána $4 675 $1 702 1 $3 umb_un_auth*0155281 $a Pupišová $b Zuzana $g Tonhauserová $f 1985- $4 675 $1 702 0 $3 umb_un_auth*0005352 $a Kompán $b Jaroslav $4 675 $f 1976- $1 702 1 $3 umb_un_auth*0083313 $a Sližik $b Miroslav $4 675 $f 1979- $1 702 1 $3 umb_un_auth*0262912 $a Mikuľáková $b Wioletta $4 675 $1 702 1 $3 umb_un_auth*0262913 $a Baňasová $b Katarína $4 675 $1 702 1 $3 umb_un_auth*0151003 $a Nemček $b Dagmar $4 675 $1 702 1 $3 umb_un_auth*0174111 $a Krajčovič $b Jaroslav $4 675 $1 702 1 $3 umb_un_auth*0133657 $a Popelka $b Jaroslav $4 675 $f 1976- $1 702 1 $3 umb_un_auth*0253717 $a Viczayová $b Ildikó $4 675 $1 702 1 $3 umb_un_auth*0120144 $a Paška $b Ľubomír $4 675
    606
    0-
    $3 umb_un_auth*0041528 $a motorické schopnosti $X motor abilities $X motorial abilities
    606
    0-
    $3 umb_un_auth*0133932 $a mladší školský vek $X younger school age $X early school age
    606
    0-
    $3 umb_un_auth*0041696 $a testovanie $X testing
    615
      
    $n 796 $a Telesná výchova a šport
    675
      
    $a 796
    700
    -1
    $3 umb_un_auth*0155281 $a Pupišová $b Zuzana $g Tonhauserová $p UMBFF09 $9 90 $f 1985- $4 070 $T Katedra telesnej výchovy a športu
    701
    -1
    $3 umb_un_auth*0201598 $a Pavlík $b Ján $p UMBFF09 $4 070 $9 10 $q 1 $f 1989- $T Katedra telesnej výchovy a športu
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
  5. SYS0042379
    LBL
      
    00104nx^^^22000613^^450
    005
      
    20170814110519.5
    250
      
    $a dobročinnosť
    450
      
    $7 ba $5 z

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.